Review #1: Atomic Theory and the Periodic Table (Chapter 3)

1. Know the meanings of, and be able to apply, the following terms:

atomic numberexcited stateisotopeprincipaatomic radiusground statemass numberquantumelectron configurationionization energynet nuclear attraction (Z_{eff})shieldingelectronegativityisoelectronicorbitalvalence

principal quantum number quantum number shielding effect valence electrons

2. Complete the following table:

Element	Atomic Number	Number of Protons	Number of Electrons	Number of Neutrons	Charge	Mass Number
Fe - 56					3+	
	27		24	31		
			54	76	2-	
Cd -112					2+	

3. Complete the following table:

Element	Atomic Number	Number of Protons	Number of Electrons	Number of Neutrons	Mass Number	Ground State Electron Configuration of Ion	Three (3) Isoelectronic Ions or Atoms
28 4- Si 14							
80 1- Br 35							
45 3+ Sc							

4. Be able to interpret electron configurations of **neutral** atoms:

Electron Configuration	Group	Period	Element	Common Ion(s)	EN	Atomic Radius	IE ₁ (V)	Conducts in pure form?
[He]2s ² 2p ⁴								
[Kr]5s ²								
[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵								
[Ne]3s ² 3p ²								
[Xe]6s ¹								

5. Be able to write electron configurations:

- a) write the condensed electron configurations for iron, phosphorus, cesium and iodine.
- b) write the *predicted* condensed electron configurations for chromium, copper, silver and gold.
- c) for the elements in question 5b, write the <u>actual</u> (experimental) electron configurations. Explain why the electrons are arranged in this way.

6. Trends on the Periodic Table:

- a) know the trends for first ionization energy, electronegativity, atomic radius, ionic radius
- b) be able to <u>explain</u> these trends with reference to the concepts of shielding effect and net nuclear attraction (Z*eff*)
 - i) why is an ion of sodium smaller than a neutral sodium atom
 - ii) why does electronegativity increase across the periodic table
 - iii) why is an atom of bromine larger than an atom of fluorine
 - iv) why is the first ionization energy of sulfur less than that of chlorine
- c) be able to interpret successive ionization energies to identify an element:

IONIZATION ENERGIES (eV, electron volts)								# of	Group # of Flement
IE1	IΕ₂	IE₃	IE4	IE₅	IE6	IE7	IE8	Valence Flectrons	or oup # of Clement
9.3	18.2	153.9	217.7	-	-	-	-		
11.3	24.4	47.9	64.5	392.0	489.8	-	-		
17.4	35.0	62.6	87.2	114.2	157.1	185.1	953.8		
5.1	47.3	71.7	98.9	138.6	172.4	208.4	264.2		
14.5	29.6	47.4	77.5	97.9	551.9	666.8	I		
13.6	35.1	54.9	77.4	113.9	138.1	739.1	871.1		
11.0	19.7	30.2	51.4	65.0	220.4	263.3	309.3		
10.4	23.4	35.0	47.3	72.5	88.0	281.0	328.8		

7. Quantum Mechanics:

- a) The number of different types of orbitals when n = 5 is ______
- b) The number of "s" orbitals in the seventh main energy level (n = 7) is _____
- c) The maximum number of electrons that can fit in the third energy level (n = 3) is _____
- d) The number of electrons that can be held in the 5-p orbitals (n = 5) is ______.
- e) The number of different types of orbitals when n = 3 is _____.
- f) The number of "p" orbitals in the fourth main energy level (n = 4) is _____
- g) The maximum number of electrons that can fit in the fifth energy level (n = 5) is ______
- h) The number of electrons that can be held in the 3-d orbitals (n = 3) is ______.
- 8. Write the quantum numbers that correspond to each of the following electrons:

Last Electron	n	l	me	ms
4s ¹				
3d ⁹				
2s ²				
5p ⁶				
1s ¹				
3p²				

- 9. Which atom or ion is larger:
- a) Si, Si⁴⁺ Si⁴⁻ or Si²⁺? Explain.
- b) Sb^{3+} , Sb^{5+} , Sb^{3-} or Sb? Explain.