Review \#6: Equilibrium Theory

1. Know the meanings of, and be able to apply, the following terms:
enthalpy Gibb's Free energy equilibrium
entropy
spontaneous reaction
2. What are four conditions that must be met in order for equilibrium to be established?
3. For each of the following reactions, identify whether:
i) maximum entropy favours the products or reactants
ii) minimum enthalpy favours the products or reactants
iii) the reaction will be spontaneous at any temperature, non-spontaneous at any temperature, or will form an equilibrium mixture of products and reactants:
a) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+$ heat
b) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{CaO}(\mathrm{s}) \leftrightarrow \mathrm{CaC}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})+$ heat
c) $3 \mathrm{O}_{2}(\mathrm{~g})+$ energy $\leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
d) $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ heat $\leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \leftrightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})+$ heat
e) $\mathrm{PbI}_{2}(\mathrm{~s})+$ heat $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{1-}(\mathrm{aq})$
4. Which of the following reactions has the greatest increase in entropy?
a) $3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
b) $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c) $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$
d) $2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \leftrightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})$
e) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
5. For the following reaction at $25^{\circ} \mathrm{C}: \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta H=-91.8 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-197 \mathrm{~J} / \mathrm{K}$. Calculate ΔG for this reaction. Which direction is favoured at this temperature?
($\Delta G=-33.1 \mathrm{~kJ}$, forward rxn favoured)
6. Use Le Chatelier's principle to predict the effect of the following stresses on the reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\text { heat }
$$

a) increasing concentration of $\mathrm{H}_{2}(\mathrm{~g})$ f) removing $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})$
b) increasing the total pressure
g) adding a catalyst
c) adding $\mathrm{N}_{2} \mathrm{O}$ (g)
h) increasing temperature
d) decreasing the amount of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
i) increasing the volume of the reaction vessel
e) adding helium to the reaction vessel
j) removing $\mathrm{N}_{2} \mathrm{O}$ (g) as it forms
7. Write the $\mathrm{K}_{\text {eq }}$ expressions for the following equilibrium reactions (careful of heterogeneous systems):
a) $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})$
b) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
c) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \leftrightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s})$
d) $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e) $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{1^{-}}(\mathrm{aq})$
f) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NaHCO}_{3}(\mathrm{~s})$
8. For the equilibrium reaction: $2 \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat

At equilibrium, the concentrations of each species are measured. $\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=0.073 \mathrm{~mol} / \mathrm{L}$, $\left[\mathrm{H}_{2}\right]=0.012 \mathrm{~mol} / \mathrm{L},\left[\mathrm{N}_{2} \mathrm{O}\right]=0.634 \mathrm{~mol} / \mathrm{L},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.484 \mathrm{~mol} / \mathrm{L}$.
a) Calculate the value of $\mathrm{K}_{\text {eq }}$ for the reaction at this temperature
b) Does the equilibrium favour the reactants or products at this temperature?
c) What is the value of $\mathrm{K}_{\text {eq }}$ for the reverse reaction at this temperature?
9. For the reaction: $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\text {eq }}=62.5$ at $520^{\circ} \mathrm{C}$
a) Does this reaction favour the reactants or products at this temperature?
b) If the reaction is endothermic and the temperature is increased, what happens to the value of $\mathrm{K}_{\text {eq }}$?
c) If 2.22 moles of HI are placed in a 5.00 L reaction vessel and allowed to come to equilibrium at $520^{\circ} \mathrm{C}$, i) calculate the concentration of each species at equilibrium $\quad\left(\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=0.209 \mathrm{M},[\mathrm{HI}]=0.026 \mathrm{M}\right)$
ii) at equilibrium, how many moles of H_{2} are present?
(1.05 mol)
d) If the volume of the vessel is decreased, which way will the equilibrium shift? Why?
10. For the reaction: $\quad \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
1.40 moles of $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})$ are placed in a 2.00 L reaction vessel and allowed to come to equilibrium. At equilibrium, there are 0.76 moles of O_{2} present in the vessel. Calculate the $\mathrm{K}_{\text {eq }}$ for this reaction. (0.45)

