Review #8: Solubility Equilibria

1.	Know the meanings of, and be able to apply, the following terms:			
(ma	olar) solubility	spectator ion	precipitate	trial Ksp
2.	Look up the K _{sp} values AgCl,		, AgNO3	_ , Ag ₂ CO ₃
a)	Arrange these salts from highest to lowest solubility:			
	Arrange these salts from the poorest to best electrolyte:			

- Calculate the molar solubility of AgI. How many grams of AgI will dissolve in 2.50 L of distilled water? (9.23 × 10⁻⁹ M, 5.42 × 10⁻⁶ g in 2.50 L)
- 4. Repeat question #3 for Ba(IO₃)₂. (0.00100 M, 1.22 g in 2.50 L)
- 5. Calculate the Ksp for strontium fluoride, given that its molar solubility is 1.02×10^{-3} mol/L. (4.24×10^{-9})
- 6. Calculate the Ksp for silver iodate if its maximum solubility is 0.0498 g/L at 25° C. (3.10 x 10^{-8})
- 7. When each of the following pairs of solutions are mixed, a precipitate forms. Write full balanced equations and net ionic equations for each reaction. You should be able to predict the precipitates that will form using the basic solubility rules that you have MEMORIZED:
- a) $AgNO_3$ (aq) + NaOH (aq) \leftrightarrow
- b) HCl (aq) + $Pb(CH_3COO)_2$ (aq) \leftrightarrow
- c) $Cu(NO_3)_2$ (aq) + K_2S (aq) \leftrightarrow
- d) $(NH_4)_2CO_3(aq) + CaBr_2(aq) \leftrightarrow$
- 8. Determine whether a precipitate will form when the following solutions are mixed:
- a) 100.0 mL of 0.100 M magnesium chlorate with 10.0 mL of 0.20 M sodium hydroxide (The possible precipitate is $Mg(OH)_2$ which has Ksp = 5.61×10^{-12} . Qsp = 3.0×10^{-5} . Since Qsp > Ksp, a precipitate will form.)
- b) 25.0 mL of 0.00020 M silver nitrate and 55.0 mL of 0.00020 M calcium chloride solution (The possible precipitate is AgCl which has Ksp = 1.77×10^{-10} . Qsp = 1.7×10^{-8} . Since Qsp > Ksp, a precipitate will form.)
- A solution of Pb(NO₃)₂ is slowly added to solution that contains a mixture of 0.10 M OH¹⁻ (aq),
 0.10 M Br¹⁻ (aq), and 0.10 M I¹⁻ (aq). Which species will precipitate first: Pb(OH)₂, PbBr₂ or PbI₂?