SCH 3UI Unit 6 Outline: Quantities in Chemistry, Moles

Lesson	Topics Covered	Homework Questions and Assignments
1	Introduction to Significant Digits	 Read through the rules for using significant digits Complete practice problems on Worksheet: Significant Digits
2	 Take up any questions about sig digs Note: Percentage Composition Law of Constant Composition calculating percent composition from experimental data 	• Complete handout: Percentage Composition Problems. Check that all numbers have units, and you have rounded your final answer to the correct number of sig digs.
3	 Note: Atomic and Molecular Mass average atomic mass relative atomic mass molecular mass (aka formula mass) Note: Calculating Percentage Composition from Atomic and Molecular Mass 	 Complete questions 1 – 5 on handout: Atomic and Molecular Mass, Practice Questions
4	Lab #6: Percentage Composition of a Compound	• work on lab report and calculations for Lab #6
5	 Note: Introduction to the Mole definition of the mole Avogadro's number calculating number of particles (atoms or molecules), given number of moles 	 complete lab report for Lab #6 (due next class) complete questions on handout: Introduction to the Mole
6	 Note: Moles and Molar Mass molar mass calculating number of moles from the mass of a substance 	• complete questions on handout: What's so Special About the Mole?
7	 Note: Moles, Molar Mass and Avogadro's Number fill in Moles Summary Sheet working between # of particles, mass and moles 	• complete handout: Using Avogadro's Number
8	 Note: Moles and the Volume of Gas SATP and STP molar volume calculating # of moles using volume of gas at STP 	 complete handout: Moles and the Volume of Gas complete handout: Mole Problems #1 begin Moles Take-home Quiz
9	 Note: Empirical (Simplest) Formula definition finding the simplest formula of a compound from experimental data "special" decimals (.5, .33 and .67) 	 complete questions on Simplest Formula on handout complete Mole Problems #2 complete Moles Take-home Quiz, due next class
10	 Note: Molecular Formulas finding molecular formulas using the simplest formula and molar mass 	 complete handout: Simplest and Molecular Formulas, Practice Q begin Unit #6 Review: Quantities in Chemistry (on line)

Uncertainty in Measurement: Introduction to Significant Digits

All measured values are ______. There is some ______ in every measurement due to the ______ of the equipment and the ______ of the person using it.

The <u>accuracy</u> of a measurement describes how close a measured value is to the ______ or _____ value. The difference between the _______ (observed) value and the _______ (accepted) value is called the <u>error</u>. The smaller the error, the ______ the accuracy.

The **precision** of a measurement indicates the ______ of a measurement and depends on the equipment used to make that measurement. A ruler can measure only to 0.1 mm but a micrometer can measure to 0.0001 mm. A micrometer gives a more precise or exact measurement.

eg. Record the time with as much certainty as each clock permits:

eg. Record the length of each pencil as much certainty as each ruler permits:

eg. Record each volume with as much certainty as each scale permits:

Determining the Number of Significant Digits

1. All non-zero digits and zeroe	es in the middle of a	number are sign	ificant.		
1.607 cm sig digs	61 m/s	sig digs	3.1428571 h	sig digs	
371 mL sig digs	5.03 s	sig digs	8006 feet	sig digs	
2. Leading zeroes (the ones at t	he beginning of a m	umber) are not si	gnificant.		
0.0055 cm sig digs	0.461 m/s	sig digs	0.000 299 811	sig digs	
0.0172 mL sig digs	0.336 s	sig digs	10056 feet	sig digs	
3. Trailing zeroes (the ones at t decimal point.	he end of a number) are only signific	cant if the numbe	er includes a	
60.00 cm sig digs	4.07800 m/s	sig digs	2000 kg	sig digs	
100 mL sig digs	650 s	sig digs	0.30050	sig digs	
 4. Numbers that are whole course have an infinite number (4 dogs sig digs 	nted numbers or ar) of significant 1000 m in a km	e defined numbe digits. sig digs	rs (such as a conv 9 carbon atoms	version factor)	
12 eggs in a dozen sig digs	10 mm	sig digs	60 min in an ho	ur sig digs	
4.11 m sig digs	0.0400 s	sig digs	12 mos / year	sig digs	
 5. When we do a calculation, the measurement used in the cal 1.5224 x 173 =	the answer has the sa culation. You may rounds to rounds to	me number of si need to convert t o	g digs as the least he answer to scie (sig c	t accurate entific notation. digs) ligs)	
3.1428571 x 12 =	rounds to	0	(sig (digs)	
6.200 x 10.1 =	rounds to	0	(sig	digs)	
30.95 x 000.822 =	rounds to	0	(sig (digs)	
 6. In the middle of a calculation Rounding off too early in a ca 1.347 cm rounded to 2 sig digs 	, carry two more si lculation can lead t	g digs than you w o significant erro 6.0045 s rounde	rill report in the f r, so round once d to 3 sig digs	inal answer. at the end.	
5.55557 g rounded to 4 sig digs		1078 min round	1078 min rounded to 2 sig digs		
4.9986 s rounded to 3 sig digs 39585 cm rounded to 2 sig digs					

Practice:

- 1. Calculate the volume of a rectangular prism that is 1.5 cm long, 2.3 cm wide and 12.8 cm high.
- 2. Calculate the volume of a sphere that has a radius of 5.0 m. (V_{sphere} = $\frac{4}{3}\pi r^3$, where $\pi = 3.14159$)
- 3. The density of pure aluminum is 2.6989 g/mL. A piece of aluminum occupies a volume of 21.8 mL, what is the mass of the piece of aluminum? (D = m/V)

Rules for Significant Digits

The number of significant digits in a measured value is an indication of the precision of the measurement. For example, a mass of 12.324 g (5 sig digs) is much more precise than a measurement of 12 g (2 sig digs).

Rules for Determining the Number of Significant Digits in Measured Values

- 1. All digits from 1-9 are significant, no matter where they are in a number.
- Zeroes found in between other digits are significant.
 eg. 3009 has 4 sig digs 140012 has 6 sig digs
- 3. "Leading zeroes" (zeroes in front of a number) are **NOT** significant. They are place-holders. We know this because when you convert these numbers to scientific notation, the leading zeroes are not reported. eg. 0.00231 has 3 sig digs (this number is 2.31×10^{-3} in scientific notation)

0.1003 has 4 sig digs	(this number is 1.003×10^{-1}	in scientific notation)
-----------------------	--	-------------------------

4. If there is **NO** decimal point in the number, then trailing zeroes (zeroes at the end of a number) are **NOT** significant.

eg. 100 has only 1 sig dig	(this number is 1×10^2 in scientific notation)
45300 has 3 sig digs	(this number is 4.53×10^4 in scientific notation)

5. If there **IS** a decimal point in the number, then trailing zeroes (zeroes at the end of a number) **ARE** significant. When you convert these numbers to scientific notation, report all trailing zeroes.

eg.	103.00 has 5 sigs digs	(this number is 1.0300×10^2 in scientific notation)
	0.02480 has 4 sig digs	(this number is 2.480×10^{-2} in scientific notation)
	250. has 3 sig digs	(the decimal is a "cheater" way to make the zero significant. Scientific
		notation is better: 2.50×10^2)

- 6. Counted values and conversion factors are considered to be exact; that is, they are infinitely accurate and have an unlimited number of significant digits. Counted values and conversion factors do not limit the number of sig digs that can be reported.

Rules for Calculations with Significant Digits

When measured values are used in calculations, the final calculated value can not be more accurate than the least accurate measured value.

D = m/V = 12.324 g)12 mL = 1.027 g/mL = 1.0 g/mL (2 sig digs)

For example, if density is calculated from a mass of 12.324 g and a volume of 12 mL, the density can have only 2 sig digs because the least accurate measurement (volume) has only 2 sig digs.

- 1. In general, for calculations involving measured values, look at the data and determine which measured value has the fewest sig digs. Round the final answer to this number of sig digs.
- 2. For calculations that involve more than one step, carry two more sig digs than you will report in your final answer. Round **ONLY** the **final answer** to the correct number of sig digs.
- 3. If necessary, convert the final answer to scientific notation to correctly report the number of sig digs. All digits in scientific notation are significant.
- 4. Round the final answer only once.
 - eg. 4.5578 rounded to three sig digs is 4.56 539.45 rounded to two sig digs is 540 or 5.4×10^2 1049.882 rounded to two sig digs is 1.0 x 10^3

Worksheet: Significant Digits

1. All digits fro	m $1-9$ and zeroe	es in the middle of	of a me	asured value an	re significant digits		
1.667 cm	sig digs	61 m/s	S	ig digs	3.506 miles _	sig digs	
307 mm	sig digs	3.1428571 _	9	sig digs	10006 km _	sig digs	
2. "Leading zer	roes" (zeroes at th	e beginning of a	measu	red value) are 1	not significant.		
0.00667 cm	sig digs	0.002004 m/s		_ sig digs	0.506 miles	sig digs	
00307.2 cm	sig digs	0.03 m		_sig digs	000005.2 s	sig digs	
 "Trailing zero decimal poin 	oes" (zeroes at the	e end of a measur	red va	lue) are signific	cant ONLY IF the	number contains a	
16.00 ounces _	sig digs	42 000 km		sig digs	0.6090 mm	sig digs	
100 g _	sig digs	0.0310 m		sig digs	500.20 s	sig digs	
4. Counted valu	es and conversion	n factors are cons	sidered	l to have an inf	inite number of sig	. digs.	
1000 m in a km	sig digs	12 eggs per de	ozen _	sig digs	1 g = 1000 mg	sig digs	
60 s per minute	sig digs	33 students	_	sig digs	1 marble	sig digs	
 5. When multip the measuren 1.5224 x 173 = 1701 ÷ 288 76 	elying and/or divident of the few	ling numbers, the est number of sig	e answ nifica 100	There must have the theorem that the digits. $0.0 \div 33 = _$	he same number of	significant digits as —	
$1/01 \div 200.70$			120	$20.75 \times 0.00822 =$			
 6. When adding as the measure 15.224 + 173.6 2500.2 - 389.75 3.1428571 - 12 = 	g and subtracting p red number with t = 53 =	measured values, he fewest numbe	the an er of d 100 200 10	nswer must hav ecimal places.) - 33 =).5 + 29.498 = - 62.344 =	e the same number 	of decimal places	
7 Complete the	following calcul		vour	$\frac{1}{2} = \frac{1}{2}$	orrect number of si	a dias:	
a) 22.4 h x 0.1	km/h =	ations and found	f)	$\frac{465 \text{ km}}{5.21 \text{ h}} =$	street number of st	g.uigs.	
b) $18 \text{ cm}^3 \text{ x } 1.1$	$10 \text{ g/cm}^3 =$		g)	72.5 m/s x 45	5.9 s =		
c) $17.5 \text{ mL} + 9$	95 mL + 8.25 ml	_ =	h)	32.1 m + 960	0 m + 20.02 m =		
d) $0.2 \text{ cm} + 23$.91 cm + 0.62 cr	n =	i)	13.63 h - 0.5	h =		
e) <u>567 m</u> 86 s			j)	15.9994 μ + 1	.00794 µ + 65.39 j	1 =	

Percentage Composition

Hundreds of years ago, early chemists carefully took compounds apart to see what they were made of. Scientists reported their results as a percentage by weight and they started to notice patterns:

- Bauxite (aluminum oxide) was always: ______ aluminum and ______ oxygen, by mass
- Salt (sodium chloride) was always: ______ sodium and ______ chlorine, by mass
- Cinnabar (mercury (II) sulfide) was always: _____ mercury and _____ sulfur, by mass

From results like these, Joseph Proust (1734 – 1794) stated the <u>Law of Definite Proportions</u>: a specific compound always contains the ______ in definite, constant proportions, by _____.

% composition =	 x 100%
(by mass)	

Calculating Percentage Composition

eg. Iron and sulfur react to produce iron sulfide. Use the following data to find the percentage composition of the compound (i.e. calculate the percentage of iron and the percentage of sulfur).

A.	mass of empty crucible	30.6 g
B.	mass of crucible and iron	41.8 g
C.	mass of crucible and iron sulfide	48.2 g

mass of iron =	mass of iron sulfide =
=	=
=	=

eg. 63.40 g of a compound is analyzed and found to contain 24.04 g of nickel, 13.14 g of sulfur and the remainder is oxygen. Calculate the percentage composition by mass of this compound.

Percentage Composition Problems

For all calculations, show a complete solution (equation, substitution and final answer). Include units for all numbers. Round your final answer to the appropriate number of significant digits.

- 1. Mercury (II) oxide decomposes when heated to produce pure mercury and oxygen gas.
- a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
- b) Use the data given below to calculate the percentage by mass of mercury in the compound.

mass of empty test tube	12.25 g
mass of test tube and mercury (II) oxide	13.68 g
mass of test tube and mercury	13.57 g

- 2. A small amount of lead is heated strongly with sulfur to produce the compound lead (II) sulfide.
- a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
- b) Using the following data, calculate the percentage by mass of lead in lead (II) sulfide.

mass of crucible	23.1 g
mass of crucible and lead metal	25.1 g
mass of crucible and lead sulfide	25.4 g

- 3. A compound of nitrogen and oxygen is found to contain 4.20 g of nitrogen and 12.0 g of oxygen. What is the percentage composition by mass of each element in this compound?
- 4. When a compound of copper (II) oxide is heated, it is converted to pure copper. In an experiment 16.35 g of copper (II) oxide yielded 13.06 g of copper.
- a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
- b) Calculate the percentage by mass of oxygen in copper oxide.
- 5. Heating 2.43 g of magnesium in air produces 4.03 g of magnesium oxide.
- a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
- b) Calculate the percentage by mass of magnesium in magnesium oxide.
- c) Calculate the percentage by mass of oxygen in magnesium oxide.
- 6. A certain compound contains 30.1% oxygen by mass. What mass of oxygen is there in 5.0 g of the compound?

Ans	wers:	
1b)	92.31%	4 sig digs
2b)	87.0 %	3 sig digs
3)	25.9% ni	trogen and 74.1% oxygen,

3 sig digs

- 4b) 20.12% 4 sig digs
- 5b) 60.3 % 3 sig digs
- 5c) 39.7 % 3 sig digs
- 6) 1.5 g of oxygen, 2 sig digs

Atomic and Molecular Mass, Practice Questions

- 1. Define (average) atomic mass, molecular mass
- 2. Why is "average atomic mass" also known as "relative atomic mass"? What are atomic masses measured relative to?
- 3. Use your Periodic Table to find the **atomic mass** of the following atoms. Round to two decimal places and include units.

- 4. Use your Periodic Table to calculate the **molecular mass** of the following compounds. Remember to use the criss-cross rule to find the chemical formula. Use atomic masses rounded to two decimal places and include units.
 - a) magnesium chloride
 - b) barium sulfite
 - c) iron (III) nitrate
 - d) ammonium phosphate
 - e) gold (III) perchlorate
- 5. Using atomic and molecular masses, calculate the % composition by mass of the following compounds. Show an equation, substitution and final answer, rounded to the correct number of sig digs.
 - a) nitrogen in sodium nitrate
 - b) carbon in C_8H_{18} (octane in gasoline)
 - c) oxygen in potassium permanganate
 - d) hydrogen in $C_6H_{12}O_6$ (glucose, sugar)

Answers 2. a C-12 atom, which has been assigned a mass of exactly 12.00000000000000...u 3. a) 107.87 u e) 196.97 u b) 39.10 u f) 126.90 u c) 16.00 u g) 22.99 u d) 52.00 u h) 19.00 u 4. a) MgCl₂: 95.21 u b) BaSO₃: 217.40 u c) $Fe(NO_3)_3$: 241.88 u d) $(NH_4)_3PO_4$: 149.12 u e) Au (ClO₄)₃: 495.32 u 5. a) NaNO₃: 16.48 % N b) C₈H₁₈: 84.09 % C c) KMnO₄: 40.50 % O d) $C_6H_{12}O_6$: 6.73 % H

Introduction to the Mole

A mole is the name of a very, very large number:

- the number of things in a mole is always 6.02×10^{23}
- this is also called Avogadro's number (N_A)
- in expanded form, it looks like this: 602 000 000 000 000 000 000 000
- mole is abbreviated "mol"

It is hard to imagine how big this number is:

- if there was one mole of marbles on the Earth, it would make a layer of marbles 80 km thick over the entire planet
- if Earth can support 7 billion people, there would have to be 86 trillion Earths to hold one mole of people
- if you spent one billion dollars every day, it would take more than a trillion years to spend a mole of dollars
- if a computer executes 26 million instructions per second, the computer would have to work non-stop for 733 million years to execute a mole of instructions

Because a mole is so big, it is used to count very tiny particles like atoms and molecules.

If	1.00 mole	=	6.02×10^{23} particles (atoms or molecules)	
then	2.00 moles	=	2.00 moles x 6.02×10^{23} particles/mole = particle	s
	5.00 moles	=	$x 6.02 \times 10^{23}$ particles/mole = particle	S
	0.75 moles	=	$_$ x 6.02 x 10 ²³ particles/mole = $_$ particle	S

This relationship can be expressed as a conversion factor:

1 mole = 6.02×10^{23} particles (atoms or molecules)

1. Calculate the number of particles in:

a)	4.55 moles of S atoms	$(2.74 \text{ x } 10^{24} \text{ atoms})$
b)	0.772 moles of water molecules	$(4.65 \text{ x } 10^{23} \text{ molecules})$
c)	364 moles of H ₂ molecules	$(2.19 \text{ x } 10^{26} \text{ molecules})$
d)	$5.00 \ge 10^{-10}$ moles of gold atoms	$(3.01 \text{ x } 10^{14} \text{ atoms})$
2.	Calculate the number of moles in:	
a)	4.67×10^{16} molecules of chlorine	(7.76 x 10 ⁻⁸ mol)
b)	3.90×10^{33} atoms of gold	$(6.48 \text{ x } 10^9 \text{ mol})$
c)	8.69×10^9 crystals of silicon dioxide (sand)	$(1.44 \text{ x } 10^{-14} \text{ mol})$
d)	7.44 x 10^{55} molecules of ammonia	$(1.24 \text{ x } 10^{32} \text{ mol})$

3. To convert from the # of molecules of a substance to the # of atoms of an element in that substance: multiply the # of molecules by the # of atoms per molecule.

a)	How many atoms of S are there in 100 molecules of Fe_2S_3 ?	(300 atoms of S)
b)	How many atoms of Fe are there in 100 molecules of Fe_2S_3 ?	(200 atoms of Fe)
c)	How many atoms, in total, are there in 100 molecules of Fe_2S_3 ?	(500 atoms total)
d)	How many atoms of O are there in 1.20×10^6 molecules of Al(ClO ₃) ₃ ?	$(1.08 \text{ x } 10^7 \text{ atoms of O})$
e)	How many atoms of Pb are there in 6.02 x 10^{23} molecules of Pb ₃ (PO ₄) ₄ ?	$(1.81 \text{ x } 10^{24} \text{ atoms of Pb})$
f)	How many atoms of Pb are there in 5.00 moles of Pb ₃ (PO ₄) ₄ molecules?	$(9.03 \text{ x } 10^{24} \text{ atoms of Pb})$

What's so Special About the Mole?

A mole is defined as ______ things.

- A mole is just a number! A very, very large number.
- Because a mole is so large, it is used to count ______

_____ like _____ and _____.

The mole is significant because of a special relationship that was defined by _

Average Atomic Mass or Molecular Mass (the mass of one atom or molecule in amu)	Molar Mass (MM) (the mass of 1 mole of atoms or molecules in grams)
1 sodium atom weighs	1 mole of sodium atoms weighs
1 helium atom weighs	1 mole of helium atoms weighs
1 water molecule weighs	1 mole of water atoms weighs
1 ammonia molecule weighs	1 mole of ammonia molecules weighs

Molar Mass () is defined as the _____

The molar mass of a substance is the same as its atomic or molecular mass, except that atomic mass and molecular mass are measured in _____ () while the molar mass is measured in _____.

If one mole of helium atoms weighs ______ g, then

- Two moles of helium atoms weighs ______ or ______
- Four moles of helium atoms weighs _____ or _____
- One half mole of helium atoms weighs ______ or ______

As a conversion factor:

1 mole = 1 molar mass (MM) of a substance in grams

1. Calculate the molar mass (MM) of the following. Include correct units and round to 2 decimal places.

a)	CO ₂	d) a	ammonium chloride		
b)	AlBr ₃	e) i	ron(II) sulfate	Ang	swers.
c)	$Na_4Fe(CN)_6$	f) c	cobalt (III) acetate	1a)	44.01 g/mol
				b)	266.68 g/mol
2a)	What is the molar mass of amm	nonia.	, NH ₃ ?	c)	303.93 g/mol
b)	What is the mass of 12.0 moles	ofar	nmonia?	(d)	53.50 g/mol
c)	What is the mass of 0.250 mole	es of a	ammonia?	e)	151.92 g/mol
d)	How many moles is 345 grams	of an	nmonia?		250.08 g/1101
e)	How many moles is 5.0 grams	of am	nmonia?	2a)	17.04 g/mol
/	5 6			b)	204 g
3.	Calculate the mass (m) of the f	ollow	ving:	(c)	4.26 g
а)	12.4 mol of helium. He				20.2 mol
h)	$0.26 \text{ mol of butane. } C_4H_{10}$				
c)	1.5×10^{-3} mol of calcium carbonate			3a)	49.6 g
d)	3.76×10^5 mol of hydrogen gas. He			b)	15 g
u)	5.76 x 10 mor of hydrogen gas	, 11 2		$\begin{vmatrix} c \\ d \end{vmatrix}$	0.15 g
Δ	Calculate the number of moles	in·			7.00 x 10 g
т. а)	0.012 g of sodium fluoride Na	F	(the amount in a tube of toothpaste)	4a)	2.9 x 10 ⁻⁴ mol
a) b)	$60.0 \text{ mg of vitamin C} C H_{2}O_{2}$	1	(the daily adult requirement)	b)	3.41 x 10 ⁻⁴ mol
0) a)	0.500 kg of table calt. NaCl		(a "box" of calt)	c)	8.56 mol
() 4)	62.456 has of gold		(a DUA UI Sall) (the emount mined ennuelly in Canada)	(d)	3.1/08 x 10° mol
u)	02 430 kg 01 gold		(the amount mined annually in Canada)	L	

MOLES SUMMARY SHEET

CONVERSION FACTORS:

1 mole = 6.02×10^{23} particles (atoms or molecules)

1 mole = 1 molar mass (MM) of a substance (in grams)

1 mole = 22.4 L of gas at STP (Standard Temperature and Pressure, 0°C and 101.3 kPa)

1 molecule $A_x B_y C_z$ = x atoms of A + y atoms of B + z atoms of C

1 molecule $A_x B_y C_z = (x + y + z)$ atoms in total

DEFINITIONS:

Mole: _____

Using Avogadro's Number

1. How many molecules are there in 2.50 moles of water?

2. How many molecules are there in 10.0 g of hydrogen gas?

3. How many atoms are there in 10.0 g of hydrogen gas?

Questions:

- 1. How many molecules are there in:
- a) 3.6 g of water
- b) 100.0 g of sodium chloride
- c) 50.0 g of sodium hydroxide
- 2. Calculate the mass of:
- a) 3.01×10^{23} atoms of gold b) 9.03×10^{25} molecules of sugar (C₁₂H₂₂O₁₁)
- c) 1 molecule of sugar, in grams
- d) 1 molecule of sugar, in amu (u)
- 3. Given 180.2 g of water:
- a) How many atoms of H are there?
- b) How many atoms of O are there?
- c) How many atoms are there in total?

- $(1.2 \times 10^{23} \text{ molecules})$ $(1.03 \times 10^{24} \text{ molecules})$ $(7.53 \times 10^{23} \text{ molecules})$
- (98.5 g) $(5.14 \text{ x } 10^4 \text{ g})$ $(5.69 \times 10^{-22} \text{ g})$ (342.34 u)
- (1.20 x 10^{25} atoms of H) (6.02 x 10^{24} atoms of O) (1.81 x 10^{25} atoms in total)

Moles and the Volume of Gas at STP

SATP stands for another way of saying "normal room conditions," or °C and	This is kPa.
STP stands for °C andkPa.	. The conditions for STP are
At STP , one mole of any gas has a volume of This is known as	the
 For example: one mole of oxygen gas, O_{2(g)} at STP has a volume of one mole of nitrogen gas, N_{2(g)} at STP has a volume of one mole of carbon dioxide gas, CO_{2(g)} at STP has a volume of one mole of methane (natural gas) CH_{4 (g)} at STP has a volume of one mole of water vapour, H₂O_(v) at STP has a volume of two moles of hydrogen gas, H_{2 (g)} at STP has a volume of three moles of hydrogen gas, H_{2 (g)} at STP has a volume of 	0 0 0 [°] hic!!
As a conversion factor: 1 mole of gas at STP = 22.4 L	

eg. What is the volume of 5.00 moles of carbon monoxide gas at STP?

eg. What is the volume of 4.00 g of oxygen gas at STP?

Questions: Use conversion factors, including all units, to answer the following questions. Round your final answer to the appropriate number of significant digits.

1.	Calculate the volume, at STP, of:	
a)	2.00 moles of H_2 gas	(44.8 L, 3 sd)
b)	0.075 moles of water vapour	(1.7 L, 2 sd)
c)	5.00 g of CO ₂	(2.54 L, 3 sd)
d)	100.0 g of sulfur dioxide gas	(35.0 L, 3 sd)
e)	6.02×10^{24} molecules of nitrogen gas	(224 L, 3 sd)
f)	1.20 X 10 ²² molecules of carbon monoxide	(0.447 L, 3 sd)
2.	How many moles are there in the following vol	lumes of gases at STP:

a)	1008 L of methane	(45.0 mol, 3 sd)
b)	2000.0 mL of dinitrogen tetroxide gas	(2000.0 mL = 2.0000 L; 0.0893 mol, 3 sd)
c)	$2.24 \times 10^6 \text{ L}$ of benzene vapour	$(1.00 \text{ x } 10^5 \text{ mol}, 3 \text{ sd})$
d)	14.56 L of Freon TM vapour, CF_2Cl_2	(0.650 mol, 3 sd)

Mole Problems #1

(The answers report the correct number of significant digits)

1.	Calculate the volume at STP of:	
a)	2.00 moles of oxygen gas, O_2	(44.8 L)
b)	5.0 g of carbon dioxide, CO ₂	(2.5 L)
c)	1.2×10^{22} molecules of CO gas	(0.45 L)

- 2. What is the mass of 100.0 L of SO₂ gas at STP? (286 g)
- 3. How many molecules are there in 4.48 L of ammonia gas, NH_3 at STP? (1.20 x 10²³ molecules)
- 4. At STP, how many hydrogen atoms are there in 1.000 m³ (1000. L) of natural gas, CH₄ ? (2.6875 x 10^{26} molecules CH₄; times 4 atoms of H per molecule = 1.08 x 10^{26} atoms of H)
- 5. Calculate the number of moles in:

a)	360.0 g of H ₂ O	(19.98 mol)
b)	0.585 g of sodium chloride	(0.0100 mol)
c)	$1.20 \ge 10^{25}$ atoms of uranium	(19.9 mol)
d)	1.00×10^9 (1 billion) molecules of CH ₄	$(1.66 \text{ x } 10^{-15} \text{ mol})$

6. Calculate the mass, in grams, of:

a)	25.0 mol of sodium carbonate	$(2649.75 \text{ g} \text{ rounds to } 2.65 \text{ x } 10^3 \text{ g} \text{ or } 2650 \text{ g})$
b)	1000.0 mol of sugar, $C_{12}H_{22}O_{11}$	(342340 g, 5 sd)

c) 2.4×10^9 molecules of CH₄ (3.9867 x 10^{-15} mol, 6.4×10^{-14} g)

d) 1 atom of carbon (1 atom is a counted value so it has unlimited sig digs) $(1.9950 \times 10^{-23} \text{ g})$ which rounds to 2.00 x $10^{-23} \text{ g})$

7. Calculate the number of **atoms** in:

a) 2.00 mol of oxygen gas, O_2	$(2.41 \times 10^{24} \text{ atoms})$
b) 0.635 g of copper, Cu	$(6.02 \text{ x } 10^{21} \text{ atoms})$
c) 3.91 g of potassium, K	$(6.02 \text{ x } 10^{22} \text{ atoms})$
d) 180.0 g of water, H_2O	(6.0133 x 10^{24} molecules of H ₂ O; and each water
	contains 3 atoms for a total of 1.80×10^{25} atoms)

1.	What is the mass , in grams, of:		
a)	$0.0100 \text{ mol of } K_2CO_3$	(1.38 g)	
b)	6.0 mol of NaOH	(240 g)	
c)	$0.50 \text{ mol of } H_2SO_4$	(49 g)	
d)	3.60×10^{24} molecules of H ₂ O	(108 g)	
e)	$1.00 \text{ x} 10^{23}$ molecules of $C_6H_{12}O_6$	(29.9 g)	
f)	$1.0 \ge 10^{20}$ atoms of chlorine	$(0.0059 \text{ g} \text{ or } 5.9 \text{ x } 10^{-3} \text{ g})$	
g)	44.8 L of Cl ₂ gas at STP	(142 g)	
h)	1.00 L of CO ₂ gas at STP	(1.96 g)	
2.	At STP, what is the volume , in litres, of:		
a)	2.65 mol of butane, C_4H_{10}	(59.4 L)	
b)	2.65 g of butane	(1.02 L)	
c)	2.65×10^{24} molecules of butane	(98.6 L)	
3.	Calculate the following (assume all gases are at STP):		
a)	the molar mass of $Pb(NO_3)_2$		

- b) the mass of 0.250 mol of NaOH
- c) the total number of atoms in one molecule of K_4 Fe(CN)₆
- d) the number of molecules in exactly two moles of $C_5H_{11}OH$
- e) the mass, in grams, of a single molecule of CCl_4
- f) the number of moles in 20.0 grams of $CaCO_3$
- g) the number of moles if there are 9.632×10^{21} molecules
- h) the number of moles in 60.0 litres of NO₂ gas at STP
- i) the number of moles of carbon in 10.0 g of C_2H_6
- j) the number of oxygen atoms in 4.40 g of NO_2 gas
- k) the volume of 9.0 x 10^{25} molecules of hydrogen gas
- l) the mass of sodium in 2.5 g of NaCl
- m) the mass of 1.2×10^{23} atoms of aluminum
- n) the mass, in grams, of exactly one atom of hydrogen
- o) the volume of 8.0 grams of propane gas, C_3H_8
- p) the number of bromine atoms in 20.0 g of $CaBr_2$

Do ya dig it??

(331.22 g/mol) (10.0 g) 4(K)+1(Fe)+6(C)+6(N) = 17 atoms $(1.20 \text{ x } 10^{24} \text{ molecules})$ $(2.55 \text{ x } 10^{-22} \text{ g})$ (0.200 mol) $(0.0160 \text{ mol or } 1.60 \text{ x } 10^{-2} \text{ mol})$ (2.68 mol) (0.665 moles of C) $(1.15 \text{ x } 10^{23} \text{ atoms of O})$ $(3348.84 \text{ L of gas} = 3.3 \text{ x } 10^3 \text{ L})$ (0.98 g of sodium) (5.4 g) $(1.68 \text{ x } 10^{-24} \text{ g})$ (4.1 L) $(1.20 \text{ x } 10^{23} \text{ atoms})$

Simplest and Molecular Formulas, Practice Questions

A. Simplest (Empirical) Formulas

- 1. Calculate the simplest formulas for compounds with:
- a) 70.9% K and 29.1 % S
- b) 56.4% P and 43.6% O
- c) 43.4% P and 56.6% O
- d) 26.6% K, 35.4% Cr & 38.0% O

B. Molecular Formulas

1. Find the molecular formulas for these compounds.

a)	39.9% C, 6.7% H, 53.4% O	Molar Mass	120.0 g/mol
b)	40.3% B, 52.2% N, 7.5% H	Molar Mass	80.4 g/mol
c)	20.2% Al, 79.8% Cl	Molar Mass	267.0 g/mol

- 2. The composition of nicotine is 74.0% carbon, 8.7% hydrogen and 17.3% nitrogen. The molar mass of the compound is 162 g/mol. Find the molecular formula of nicotine.
- 3. A gaseous compound contains 82.7% carbon and 17.3% hydrogen by weight. 1.00 litre of this compound weighs 2.59 grams at STP. What is the molecular formula of the substance?
- 4. 1.0 gram of a compound containing 30.5% nitrogen and 69.5% oxygen occupies 243 mL measured at STP. What is the molecular formula of this compound?

Ans A. 1a)	swers: Simplest Formulas K ₂ S b) P ₂ O ₃	c) P ₂ O ₅	d) K ₂ Cr ₂ O ₇			
B. Molecular Formulas						
1a)	$C_4H_8O_4$	b) B ₃ N ₃ H ₆	c) Al_2Cl_6			
2.	$C_{10}H_{14}N_2$					
3.	C_4H_{10}					
4.	Simplest formula is NO ₂ , # of moles = $vol/22.4 L/mol = 0.0108 mol$					
	Then, molar mass = mass / # of moles = $1.0 \text{ g} / 0.0108 \text{ mol} = 92.6 \text{ g/mol}$					
	Then, use MM to find molecular formula, which is N ₂ O ₄					