SCH 3UI Unit 6 Outline:
Quantities in Chemistry, Moles

| Lesson | Topics Covered | Homework Questions and Assignments |
| :---: | :---: | :---: |
| 1 | Introduction to Significant Digits | - Read through the rules for using significant digits <br> - Complete practice problems on Worksheet: Significant Digits |
| 2 | Take up any questions about sig digs <br> Note: Percentage Composition <br> - Law of Constant Composition <br> - calculating percent composition from experimental data | - Complete handout: Percentage Composition Problems. Check that all numbers have units, and you have rounded your final answer to the correct number of sig digs. |
| 3 | Note: Atomic and Molecular Mass <br> - average atomic mass <br> - relative atomic mass <br> - molecular mass (aka formula mass) <br> Note: Calculating Percentage Composition from Atomic and Molecular Mass | - Complete questions $1-5$ on handout: Atomic and Molecular Mass, Practice Questions |
| 4 | Lab \#6: Percentage Composition of a Compound | - work on lab report and calculations for Lab \#6 |
| 5 | Note: Introduction to the Mole <br> - definition of the mole <br> - Avogadro's number <br> - calculating number of particles (atoms or molecules), given number of moles | - complete lab report for Lab \#6 (due next class) <br> - complete questions on handout: Introduction to the Mole |
| 6 | Note: Moles and Molar Mass <br> - molar mass <br> - calculating number of moles from the mass of a substance | - complete questions on handout: What's so Special About the Mole? |
| 7 | Note: Moles, Molar Mass and Avogadro's Number <br> - fill in Moles Summary Sheet <br> - working between \# of particles, mass and moles | - complete handout: Using Avogadro's Number |
| 8 | Note: Moles and the Volume of Gas <br> - SATP and STP <br> - molar volume <br> - calculating \# of moles using volume of gas at STP | - complete handout: Moles and the Volume of Gas <br> - complete handout: Mole Problems \#1 <br> - begin Moles Take-home Quiz |
| 9 | Note: Empirical (Simplest) Formula <br> - definition <br> - finding the simplest formula of a compound from experimental data <br> - "special" decimals (.5, . 33 and .67 ) | - complete questions on Simplest Formula on handout <br> - complete Mole Problems \#2 <br> - complete Moles Take-home Quiz, due next class |
| 10 | Note: Molecular Formulas <br> - finding molecular formulas using the simplest formula and molar mass | - complete handout: Simplest and Molecular Formulas, Practice Q <br> - begin Unit \#6 Review: Quantities in Chemistry (on line) |

## Uncertainty in Measurement: Introduction to Significant Digits

All measured values are $\qquad$ . There is some $\qquad$ in every measurement due to the $\qquad$ of the equipment and the $\qquad$ of the person using it.

The accuracy of a measurement describes how close a measured value is to the $\qquad$ or
$\qquad$ value. The difference between the $\qquad$ (observed) value and the
$\qquad$ (accepted) value is called the error. The smaller the error, the $\qquad$ the accuracy.

The precision of a measurement indicates the $\qquad$ of a measurement and depends on the equipment used to make that measurement. A ruler can measure only to 0.1 mm but a micrometer can measure to 0.0001 mm . A micrometer gives a more precise or exact measurement.

The digits that can be reasonably reported for a measured value are called $\qquad$
$\qquad$ ( $\qquad$ ). The number of significant digits indicates the $\qquad$ of a measurement. As a rule, estimate $\qquad$ from in between the scale markings.
eg. Record the time with as much certainty as each clock permits:

eg. Record the length of each pencil as much certainty as each ruler permits:

eg. Record each volume with as much certainty as each scale permits:


## Determining the Number of Significant Digits

1. All non-zero digits and zeroes in the middle of a number are significant.
1.607 cm $\qquad$ sig digs
$61 \mathrm{~m} / \mathrm{s}$ $\qquad$ sig digs
371 mL $\qquad$ sig digs
5.03 s $\qquad$ sig digs
3.1428571 h
8006 feet
$\qquad$ sig digs
2. Leading zeroes (the ones at the beginning of a number) are not significant.

| 0.0055 cm | sig digs | $0.461 \mathrm{~m} / \mathrm{s}$ | sig digs | 0.000299811 | sig digs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0172 mL | sig digs | 0.336 s | sig digs | 10056 feet | sig digs |

3. Trailing zeroes (the ones at the end of a number) are only significant if the number includes a decimal point.
60.00 cm $\qquad$ sig digs
100 mL $\qquad$ sig digs
$4.07800 \mathrm{~m} / \mathrm{s}$
$\qquad$ sig digs

2000 kg sig digs 0.30050
$\qquad$ sig digs
4. Numbers that are whole counted numbers or are defined
have an infinite number (rigicant digits.
4 of significans
4 dogs
12 eggs in a dozen
$\qquad$ sig digs $\quad 1000 \mathrm{~m}$ in a km $\qquad$ sig digs 9 carbon atoms $\qquad$ sig digs

12 eggs in a dozen $\qquad$ sig digs $\quad 10 \mathrm{~mm}$ $\qquad$ sig digs

60 min in an hour $\qquad$ sig digs
4.11 m $\qquad$ sig digs $\quad 0.0400 \mathrm{~s}$ $\qquad$ sig digs

12 mos / year $\qquad$ sig digs
5. When we do a calculation, the answer has the same number of sig digs as the least accurate measurement used in the calculation. You may need to convert the answer to scientific notation.
$1.5224 \times 173=$
$\qquad$ rounds to $\qquad$ ( $\qquad$ sig digs)
$1701 \div 288.76=$ $\qquad$ rounds to $\qquad$ ( $\qquad$ sig digs)
$3.1428571 \times 12=$ $\qquad$ rounds to $\qquad$ ( sig digs)
$6.200 \times 10.1=$
$30.95 \times 000.822=$ $\qquad$ rounds to $\qquad$
$\qquad$ sig digs)
6. In the middle of a calculation, carry two more sig digs than you will report in the final answer. Rounding off too early in a calculation can lead to significant error, so round once at the end.
1.347 cm rounded to 2 sig digs $\qquad$ 6.0045 s rounded to 3 sig digs $\qquad$
5.55557 g rounded to 4 sig digs $\qquad$ 1078 min rounded to 2 sig digs $\qquad$
4.9986 s rounded to 3 sig digs $\qquad$ 39585 cm rounded to 2 sig digs $\qquad$

## Practice:

1. Calculate the volume of a rectangular prism that is 1.5 cm long, 2.3 cm wide and 12.8 cm high.
2. Calculate the volume of a sphere that has a radius of $5.0 \mathrm{~m} .\left(\mathrm{V}_{\text {sphere }}={ }^{4} / 3 \pi \mathrm{r}^{3}\right.$, where $\left.\pi=3.14159\right)$
3. The density of pure aluminum is $2.6989 \mathrm{~g} / \mathrm{mL}$. A piece of aluminum occupies a volume of 21.8 mL , what is the mass of the piece of aluminum? $(\mathrm{D}=\mathrm{m} / \mathrm{V})$

## Rules for Significant Digits

The number of significant digits in a measured value is an indication of the precision of the measurement. For example, a mass of $12.324 \mathrm{~g}(5 \mathrm{sig} \operatorname{digs})$ is much more precise than a measurement of $12 \mathrm{~g}(2 \mathrm{sig}$ digs $)$.

## Rules for Determining the Number of Significant Digits in Measured Values

1. All digits from $1-9$ are significant, no matter where they are in a number.
2. Zeroes found in between other digits are significant.
eg. 3009 has 4 sig digs 140012 has 6 sig digs
3. "Leading zeroes" (zeroes in front of a number) are NOT significant. They are place-holders. We know this because when you convert these numbers to scientific notation, the leading zeroes are not reported. eg. 0.00231 has 3 sig digs (this number is $2.31 \times 10^{-3} \mathrm{in}$ scientific notation)
0.1003 has 4 sig digs
(this number is $1.003 \times 10^{-1} \mathrm{in}$ scientific notation)
4. If there is NO decimal point in the number, then trailing zeroes (zeroes at the end of a number) are NOT significant.
eg. 100 has only 1 sig dig (this number is $1 \times 10^{2}$ in scientific notation)
45300 has 3 sig digs
(this number is $4.53 \times 10^{4}$ in scientific notation)
5. If there IS a decimal point in the number, then trailing zeroes (zeroes at the end of a number) ARE significant. When you convert these numbers to scientific notation, report all trailing zeroes.
eg. 103.00 has 5 sigs digs (this number is $1.0300 \times 10^{2}$ in scientific notation)
0.02480 has 4 sig digs
(this number is $2.480 \times 10^{-2}$ in scientific notation)
6. has 3 sig digs
(the decimal is a "cheater" way to make the zero significant. Scientific notation is better: $2.50 \times 10^{2}$ )
7. Counted values and conversion factors are considered to be exact; that is, they are infinitely accurate and have an unlimited number of significant digits. Counted values and conversion factors do not limit the number of sig digs that can be reported.
eg. 24 sheep is exactly 24 sheep (it means $24.00000000000000000000000000 \ldots$ )
100 cm in a metre is exactly 100 (it means $100.0000000000000000000000 \ldots$ )

## Rules for Calculations with Significant Digits

When measured values are used in calculations, the final calculated value can not be more accurate than the least accurate measured value.
For example, if density is calculated from a mass of 12.324 g and a volume of 12 mL , the density can have only 2 sig digs because the least accurate measurement (volume) has only 2 sig digs.

$$
\begin{aligned}
\mathrm{D} & =\mathrm{m} / \mathrm{V} \\
& =12.324 \mathrm{~g}) 12 \mathrm{~mL} \\
& =1.027 \mathrm{~g} / \mathrm{mL} \\
& =1.0 \mathrm{~g} / \mathrm{mL}(2 \mathrm{sig} \mathrm{digs})
\end{aligned}
$$

1. In general, for calculations involving measured values, look at the data and determine which measured value has the fewest sig digs. Round the final answer to this number of sig digs.
2. For calculations that involve more than one step, carry two more sig digs than you will report in your final answer. Round ONLY the final answer to the correct number of sig digs.
3. If necessary, convert the final answer to scientific notation to correctly report the number of sig digs. All digits in scientific notation are significant.
4. Round the final answer only once.
eg. 4.5578 rounded to three sig digs is 4.56
539.45 rounded to two sig digs is 540 or $5.4 \times 10^{2}$
1049.882 rounded to two sig digs is $1.0 \times 10^{3}$

## Worksheet: Significant Digits

1. All digits from $1-9$ and zeroes in the middle of a measured value are significant digits.
1.667 cm $\qquad$ sig digs
$61 \mathrm{~m} / \mathrm{s}$ $\qquad$ sig digs
3.506 miles $\qquad$ sig digs
307 mm $\qquad$ sig digs
3.1428571 $\qquad$ sig digs 10006 km $\qquad$ sig digs
2. "Leading zeroes" (zeroes at the beginning of a measured value) are not significant.

| 0.00667 cm | sig digs | $0.002004 \mathrm{~m} / \mathrm{s}$ | sig digs | 0.506 miles | digs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00307.2 cm | sig digs | 0.03 m | sig digs | 000005.2 s | sig digs |

3. "Trailing zeroes" (zeroes at the end of a measured value) are significant ONLY IF the number contains a decimal point.

| 16.00 ounces | sig digs | 42000 km | sig digs | 0.6090 mm | digs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100 g | sig digs | 0.0310 m | sig digs | 500.20 s | $\ldots$ sig digs |

4. Counted values and conversion factors are considered to have an infinite number of sig. digs.

1000 m in a km $\qquad$ sig digs $\quad 12$ eggs per dozen $\qquad$ sig digs $\quad 1 \mathrm{~g}=1000 \mathrm{mg}$ $\qquad$ sig digs 60 s per minute $\qquad$ sig digs

33 students ___ sig digs 1 marble $\qquad$ sig digs
5. When multiplying and/or dividing numbers, the answer must have the same number of significant digits as the measurement with the fewest number of significant digits.
$1.5224 \times 173=$ $\qquad$
$1701 \div 288.76=$ $\qquad$
$3.2 \times 10.1=$ $\qquad$
$100.0 \div 33=$ $\qquad$

$$
1200 \div 2974=
$$

$\qquad$
$30.75 \times 000.822=$
$\qquad$
6. When adding and subtracting measured values, the answer must have the same number of decimal places as the measured number with the fewest number of decimal places.
$15.224+173.6=$ $\qquad$
$2500.2-389.753=$
$100-33=$ $\qquad$
$\qquad$
$200.5+29.498=$ $\qquad$
$3.1428571-12=$ $\qquad$ $10-62.344=$ $\qquad$
7. Complete the following calculations and round your answer to the correct number of sig.digs:
a) $22.4 \mathrm{~h} \times 0.1 \mathrm{~km} / \mathrm{h}=$
f) $\frac{465 \mathrm{~km}}{5.21 \mathrm{~h}}=$ 5.21 h
b) $18 \mathrm{~cm}^{3} \times 1.10 \mathrm{~g} / \mathrm{cm}^{3}=$
g) $72.5 \mathrm{~m} / \mathrm{s} \times 45.9 \mathrm{~s}=$
c) $17.5 \mathrm{~mL}+95 \mathrm{~mL}+8.25 \mathrm{~mL}=$
h) $32.1 \mathrm{~m}+960 \mathrm{~m}+20.02 \mathrm{~m}=$
d) $0.2 \mathrm{~cm}+23.91 \mathrm{~cm}+0.62 \mathrm{~cm}=$
i) $13.63 \mathrm{~h}-0.5 \mathrm{~h}=$
e) $\frac{567 \mathrm{~m}}{86 \mathrm{~s}}$
j) $15.9994 \mu+1.00794 \mu+65.39 \mu=$

## Percentage Composition

Hundreds of years ago, early chemists carefully took compounds apart to see what they were made of. Scientists reported their results as a percentage by weight and they started to notice patterns:

- Bauxite (aluminum oxide) was always: $\qquad$ aluminum and $\qquad$ oxygen, by mass
- Salt (sodium chloride) was always: $\qquad$ sodium and $\qquad$ chlorine, by mass
- Cinnabar (mercury (II) sulfide) was always: $\qquad$ mercury and $\qquad$ sulfur, by mass

From results like these, Joseph Proust (1734-1794) stated the Law of Definite Proportions: a specific compound always contains the $\qquad$ in definite, constant proportions, by $\qquad$ .

```
% composition =
(by mass)
```


## Calculating Percentage Composition

eg. Iron and sulfur react to produce iron sulfide. Use the following data to find the percentage composition of the compound (i.e. calculate the percentage of iron and the percentage of sulfur).
A. mass of empty crucible
30.6 g
B. mass of crucible and iron
41.8 g
C. mass of crucible and iron sulfide
48.2 g

| mass of iron | $=\square$ |
| ---: | :--- |
|  | $=\square$ |
|  | $=\square$ |

$\qquad$
mass of iron sulfide $=$
$=$
eg. 63.40 g of a compound is analyzed and found to contain 24.04 g of nickel, 13.14 g of sulfur and the remainder is oxygen. Calculate the percentage composition by mass of this compound.

## Percentage Composition Problems

For all calculations, show a complete solution (equation, substitution and final answer). Include units for all numbers. Round your final answer to the appropriate number of significant digits.

1. Mercury (II) oxide decomposes when heated to produce pure mercury and oxygen gas.
a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
b) Use the data given below to calculate the percentage by mass of mercury in the compound.

| mass of empty test tube | 12.25 g |
| :--- | :--- |
| mass of test tube and mercury (II) oxide | 13.68 g |
| mass of test tube and mercury | 13.57 g |

2. A small amount of lead is heated strongly with sulfur to produce the compound lead (II) sulfide.
a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
b) Using the following data, calculate the percentage by mass of lead in lead (II) sulfide.

| mass of crucible | 23.1 g |
| :--- | :--- |
| mass of crucible and lead metal | 25.1 g |
| mass of crucible and lead sulfide | 25.4 g |

3. A compound of nitrogen and oxygen is found to contain 4.20 g of nitrogen and 12.0 g of oxygen. What is the percentage composition by mass of each element in this compound?
4. When a compound of copper (II) oxide is heated, it is converted to pure copper. In an experiment 16.35 g of copper (II) oxide yielded 13.06 g of copper.
a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
b) Calculate the percentage by mass of oxygen in copper oxide.
5. Heating 2.43 g of magnesium in air produces 4.03 g of magnesium oxide.
a) Write the balanced chemical equation for this reaction, including the states of all reactants and products.
b) Calculate the percentage by mass of magnesium in magnesium oxide.
c) Calculate the percentage by mass of oxygen in magnesium oxide.
6. A certain compound contains $30.1 \%$ oxygen by mass. What mass of oxygen is there in 5.0 g of the compound?
[^0]
## Atomic and Molecular Mass, Practice Questions

1. Define (average) atomic mass, molecular mass
2. Why is "average atomic mass" also known as "relative atomic mass"? What are atomic masses measured relative to?
3. Use your Periodic Table to find the atomic mass of the following atoms. Round to two decimal places and include units.
a) silver $\qquad$
e) gold $\qquad$
b) potassium $\qquad$
f) iodine $\qquad$
c) oxygen $\qquad$ g) sodium $\qquad$
d) chromium $\qquad$ h) fluorine $\qquad$
4. Use your Periodic Table to calculate the molecular mass of the following compounds. Remember to use the criss-cross rule to find the chemical formula. Use atomic masses rounded to two decimal places and include units.
a) magnesium chloride
b) barium sulfite
c) iron (III) nitrate
d) ammonium phosphate
e) gold (III) perchlorate
5. Using atomic and molecular masses, calculate the \% composition by mass of the following compounds. Show an equation, substitution and final answer, rounded to the correct number of sig digs.
a) nitrogen in sodium nitrate
b) carbon in $\mathrm{C}_{8} \mathrm{H}_{18}$ (octane in gasoline)
c) oxygen in potassium permanganate
d) hydrogen in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose, sugar)

## Answers

2. a C-12 atom, which has been assigned a mass of exactly $12.000000000000000 \ldots$ u
$\begin{array}{ll}\text { 3. a) } 107.87 \mathrm{u} & \text { e) } 196.97 \mathrm{u}\end{array}$
b) $39.10 u \quad$ f) $126.90 u$
c) 16.00 u
g) 22.99 u
d) 52.00 u
h) 19.00 u
3. a) $\mathrm{MgCl}_{2}: 95.21 \mathrm{u}$
b) $\mathrm{BaSO}_{3}: 217.40 \mathrm{u}$
c) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}: 241.88 \mathrm{u}$
d) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ : 149.12 u
e) $\mathrm{Au}\left(\mathrm{ClO}_{4}\right)_{3}: 495.32 \mathrm{u}$
4. a) $\mathrm{NaNO}_{3}: 16.48 \% \mathrm{~N}$
b) $\mathrm{C}_{8} \mathrm{H}_{18}: \quad 84.09 \% \mathrm{C}$
c) $\mathrm{KMnO}_{4}: 40.50 \% \mathrm{O}$
d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}: 6.73 \% \mathrm{H}$

A mole is the name of a very, very large number:

- the number of things in a mole is always $6.02 \times 10^{23}$
- this is also called Avogadro's number $\left(\mathrm{N}_{\mathrm{A}}\right)$
- in expanded form, it looks like this: 602000000000000000000000
- mole is abbreviated "mol"

It is hard to imagine how big this number is:


- if there was one mole of marbles on the Earth, it would make a layer of marbles 80 km thick over the entire planet
- if Earth can support 7 billion people, there would have to be 86 trillion Earths to hold one mole of people
- if you spent one billion dollars every day, it would take more than a trillion years to spend a mole of dollars
- if a computer executes 26 million instructions per second, the computer would have to work non-stop for 733 million years to execute a mole of instructions

Because a mole is so big, it is used to count very tiny particles like atoms and molecules.

This relationship can be expressed as a conversion factor:

$$
1 \text { mole }=6.02 \times 10^{23} \text { particles }(\text { atoms or molecules })
$$

1. Calculate the number of particles in:
a) 4.55 moles of $S$ atoms
( $2.74 \times 10^{24}$ atoms)
b) 0.772 moles of water molecules ( $4.65 \times 10^{23}$ molecules)
c) 364 moles of $\mathrm{H}_{2}$ molecules
( $2.19 \times 10^{26}$ molecules)
d) $5.00 \times 10^{-10}$ moles of gold atoms (3.01 $\times 10^{14}$ atoms)
2. Calculate the number of moles in:
a) $4.67 \times 10^{16}$ molecules of chlorine
$\left(7.76 \times 10^{-8} \mathrm{~mol}\right)$
b) $3.90 \times 10^{33}$ atoms of gold
( $6.48 \times 10^{9} \mathrm{~mol}$ )
c) $8.69 \times 10^{9}$ crystals of silicon dioxide (sand)
$\left(1.44 \times 10^{-14} \mathrm{~mol}\right)$
d) $7.44 \times 10^{55}$ molecules of ammonia
$\left(1.24 \times 10^{32} \mathrm{~mol}\right)$
3. To convert from the \# of molecules of a substance to the \# of atoms of an element in that substance: multiply the \# of molecules by the \# of atoms per molecule.
a) How many atoms of S are there in 100 molecules of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ ?
(300 atoms of S)
b) How many atoms of Fe are there in 100 molecules of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ ?
(200 atoms of Fe )
c) How many atoms, in total, are there in 100 molecules of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ ?
(500 atoms total)
d) How many atoms of O are there in $1.20 \times 10^{6}$ molecules of $\mathrm{Al}\left(\mathrm{ClO}_{3}\right)_{3}$ ?
( $1.08 \times 10^{7}$ atoms of O )
e) How many atoms of Pb are there in $6.02 \times 10^{23}$ molecules of $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ ?
(1.81 $\times 10^{24}$ atoms of Pb )
f) How many atoms of Pb are there in 5.00 moles of $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ molecules?
( $9.03 \times 10^{24}$ atoms of Pb )

## What's so Special About the Mole?

A mole is defined as $\qquad$ things.

- A mole is just a number! A very, very large number.
- Because a mole is so large, it is used to count $\qquad$
$\qquad$ like $\qquad$ and $\qquad$ .


The mole is significant because of a special relationship that was defined by

| Average Atomic Mass or Molecular Mass <br> (the mass of one atom or molecule in amu) | Molar Mass (MM) <br> (the mass of 1 mole of atoms or molecules in grams) |
| :--- | :--- |
| 1 sodium atom weighs | 1 mole of sodium atoms weighs |
| 1 helium atom weighs | 1 mole of helium atoms weighs |
| 1 water molecule weighs | 1 mole of water atoms weighs |
| 1 ammonia molecule weighs | 1 mole of ammonia molecules weighs |

Molar Mass ( ) is defined as the $\qquad$
The molar mass of a substance is the same as its atomic or molecular mass, except that atomic mass and molecular mass are measured in $\qquad$ ( ) while the molar mass is measured in $\qquad$ .

If one mole of helium atoms weighs $\qquad$ g , then

- Two moles of helium atoms weighs $\qquad$ or $\qquad$
- Four moles of helium atoms weighs $\qquad$ or $\qquad$
- One half mole of helium atoms weighs $\qquad$ or $\qquad$

As a conversion factor:

## 1 mole $=1$ molar mass $(M M)$ of a substance in grams

1. Calculate the molar mass (MM) of the following. Include correct units and round to 2 decimal places.
a) $\mathrm{CO}_{2}$
d) ammonium chloride
b) $\mathrm{AlBr}_{3}$
e) iron(II) sulfate
c) $\mathrm{Na}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$
f) cobalt (III) acetate

2a) What is the molar mass of ammonia, $\mathrm{NH}_{3}$ ?
b) What is the mass of 12.0 moles of ammonia?
c) What is the mass of 0.250 moles of ammonia?
d) How many moles is 345 grams of ammonia?
e) How many moles is 5.0 grams of ammonia?
3. Calculate the mass (m) of the following:
a) 12.4 mol of helium, He
b) 0.26 mol of butane, $\mathrm{C}_{4} \mathrm{H}_{10}$
c) $1.5 \times 10^{-3} \mathrm{~mol}$ of calcium carbonate
d) $3.76 \times 10^{5} \mathrm{~mol}$ of hydrogen gas, $\mathrm{H}_{2}$
4. Calculate the number of moles in:
a) 0.012 g of sodium fluoride, NaF
b) $\quad 60.0 \mathrm{mg}$ of vitamin $\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$
c) 0.500 kg of table salt, NaCl
d) 62456 kg of gold
(the amount in a tube of toothpaste)
(the daily adult requirement)
(a "box" of salt)
(the amount mined annually in Canada)

Answers:
1a) $44.01 \mathrm{~g} / \mathrm{mol}$
b) $266.68 \mathrm{~g} / \mathrm{mol}$
c) $303.93 \mathrm{~g} / \mathrm{mol}$
d) $53.50 \mathrm{~g} / \mathrm{mol}$
e) $151.92 \mathrm{~g} / \mathrm{mol}$
f) $236.08 \mathrm{~g} / \mathrm{mol}$

2a) $17.04 \mathrm{~g} / \mathrm{mol}$
b) 204 g
c) 4.26 g
d) 20.2 mol
e) 0.29 mol

3a) 49.6 g
b) 15 g
c) 0.15 g
d) $7.60 \times 10^{5} \mathrm{~g}$

4a) $2.9 \times 10^{-4} \mathrm{~mol}$
b) $3.41 \times 10^{-4} \mathrm{~mol}$
c) 8.56 mol
d) $3.1708 \times 10^{5} \mathrm{~mol}$

## MOLES SUMMARY SHEET



## CONVERSION FACTORS:

1 mole $=6.02 \times 10^{23}$ particles (atoms or molecules)
1 mole = 1 molar mass (MM) of a substance (in grams)
1 mole $=22.4 \mathrm{~L}$ of gas at STP $\quad$ (Standard Temperature and Pressure, $0^{\circ} \mathrm{C}$ and 101.3 kPa )
1 molecule $\mathbf{A}_{\mathbf{x}} \mathbf{B}_{\mathbf{y}} \mathbf{C}_{\mathbf{z}}=\mathbf{x}$ atoms of $\mathrm{A}+\mathbf{y}$ atoms of $\mathrm{B}+\mathbf{z}$ atoms of $\mathbf{C}$
1 molecule $A_{x} B_{y} C_{z}=(x+y+z)$ atoms in total

## DEFINITIONS:

Mole: $\qquad$
(Average) Atomic Mass: $\qquad$

Molecular Mass: $\qquad$

Molar Mass (MM): $\qquad$

Molar Volume (MV): $\qquad$

## Using Avogadro's Number

1. How many molecules are there in 2.50 moles of water?

2. How many molecules are there in 10.0 g of hydrogen gas?
3. How many atoms are there in 10.0 g of hydrogen gas?

## Questions:

1. How many molecules are there in:
a) 3.6 g of water
b) 100.0 g of sodium chloride
c) 50.0 g of sodium hydroxide
(1.2 $\times 10^{23}$ molecules)
( $1.03 \times 10^{24}$ molecules)
( $7.53 \times 10^{23}$ molecules)
2. Calculate the mass of:
a) $3.01 \times 10^{23}$ atoms of gold
b) $9.03 \times 10^{25}$ molecules of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
c) 1 molecule of sugar, in grams
( 98.5 g )
d) 1 molecule of sugar, in amu (u)
$\left(5.14 \times 10^{4} \mathrm{~g}\right)$
$\left(5.69 \times 10^{-22} \mathrm{~g}\right)$
3. Given 180.2 g of water:
a) How many atoms of H are there?
$\left(1.20 \times 10^{25}\right.$ atoms of H)
b) How many atoms of O are there?
( $6.02 \times 10^{24}$ atoms of O )
c) How many atoms are there in total?
( $1.81 \times 10^{25}$ atoms in total)

## Moles and the Volume of Gas at STP

SATP stands for $\qquad$ ${ }^{\circ} \mathrm{C}$ and $\qquad$ kPa .

STP stands for $\qquad$ . The conditions for STP are
$\qquad$ ${ }^{\circ} \mathrm{C}$ and $\qquad$ kPa .

At STP, one mole of any gas has a volume of $\qquad$ . This is known as the $\qquad$ .

## For example:

- one mole of oxygen gas, $\mathrm{O}_{2(\mathrm{~g})}$ at STP has a volume of
- one mole of nitrogen gas, $\mathrm{N}_{2(\mathrm{~g})}$ at STP has a volume of
$\qquad$
- one mole of carbon dioxide gas, $\mathrm{CO}_{2(\mathrm{~g})}$ at STP has a volume of
- one mole of methane (natural gas) $\mathrm{CH}_{4(\mathrm{~g})}$ at STP has a volume of $\qquad$
- one mole of water vapour, $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$ at STP has a volume of $\qquad$ -
- two moles of hydrogen gas, $\mathrm{H}_{2(\mathrm{~g})}$ at STP has a volume of $\qquad$
- three moles of hydrogen gas, $\mathrm{H}_{2(\mathrm{~g})}$ at STP has a volume of $\qquad$


As a conversion factor: 1 mole of gas at $\mathrm{STP}=22.4 \mathrm{~L}$
eg. What is the volume of 5.00 moles of carbon monoxide gas at STP?
eg. What is the volume of 4.00 g of oxygen gas at STP?

Questions: Use conversion factors, including all units, to answer the following questions. Round your final answer to the appropriate number of significant digits.

1. Calculate the volume, at STP, of:
a) 2.00 moles of $\mathrm{H}_{2}$ gas
(44.8 L, 3 sd )
b) 0.075 moles of water vapour
(1.7 L, 2 sd )
c) 5.00 g of $\mathrm{CO}_{2}$
(2.54 L, 3 sd )
d) 100.0 g of sulfur dioxide gas
(35.0 L, 3 sd )
e) $6.02 \times 10^{24}$ molecules of nitrogen gas
( $224 \mathrm{~L}, 3 \mathrm{sd}$ )
f) $1.20 \times 10^{22}$ molecules of carbon monoxide
2. How many moles are there in the following volumes of gases at STP:
a) 1008 L of methane
( $45.0 \mathrm{~mol}, 3 \mathrm{sd}$ )
b) 2000.0 mL of dinitrogen tetroxide gas
( $2000.0 \mathrm{~mL}=2.0000 \mathrm{~L} ; 0.0893 \mathrm{~mol}, 3 \mathrm{sd}$ )
c) $2.24 \times 10^{6} \mathrm{~L}$ of benzene vapour
( $1.00 \times 10^{5} \mathrm{~mol}, 3 \mathrm{sd}$ )
d) 14.56 L of Freon ${ }^{\mathrm{TM}}$ vapour, $\mathrm{CF}_{2} \mathrm{Cl}_{2}$
( $0.650 \mathrm{~mol}, 3 \mathrm{sd}$ )

## Mole Problems \#1

(The answers report the correct number of significant digits)

1. Calculate the volume at STP of:
a) 2.00 moles of oxygen gas, $\mathrm{O}_{2}$
(44.8 L)
b) 5.0 g of carbon dioxide, $\mathrm{CO}_{2}$
c) $1.2 \times 10^{22}$ molecules of CO gas
2. What is the mass of $100.0 \mathrm{~L}^{\text {of } \mathrm{SO}_{2} \text { gas at STP? }}$
3. How many molecules are there in 4.48 L of ammonia gas, $\mathrm{NH}_{3}$ at STP ? $\left(1.20 \times 10^{23}\right.$ molecules $)$
4. At STP, how many hydrogen atoms are there in $1.000 \mathrm{~m}^{3}$ (1000. L$)$ of natural gas, $\mathrm{CH}_{4}$ ? ( $2.6875 \times 10^{26}$ molecules $\mathrm{CH}_{4}$; times 4 atoms of H per molecule $=1.08 \times 10^{26}$ atoms of H )
5. Calculate the number of moles in:
a) 360.0 g of $\mathrm{H}_{2} \mathrm{O}$
(19.98 mol)
b) 0.585 g of sodium chloride
( 0.0100 mol )
c) $1.20 \times 10^{25}$ atoms of uranium
( 19.9 mol )
d) $1.00 \times 10^{9}$ (1 billion) molecules of $\mathrm{CH}_{4}$
$\left(1.66 \times 10^{-15} \mathrm{~mol}\right)$
6. Calculate the mass, in grams, of:
a) 25.0 mol of sodium carbonate
b) 1000.0 mol of sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
c) $2.4 \times 10^{9}$ molecules of $\mathrm{CH}_{4}$ ( 2649.75 g rounds to $2.65 \times 10^{3} \mathrm{~g}$ or 2650 g )
d) 1 atom of carbon ( 1 atom is a counted value so it has unlimited sig digs) $\left(1.9950 \times 10^{-23} \mathrm{~g}\right.$ which rounds to $\left.2.00 \times 10^{-23} \mathrm{~g}\right)$
7. Calculate the number of atoms in:
a) 2.00 mol of oxygen gas, $\mathrm{O}_{2}$
b) 0.635 g of copper, Cu
c) 3.91 g of potassium, K
d) 180.0 g of water, $\mathrm{H}_{2} \mathrm{O}$
( $2.41 \times 10^{24}$ atoms)
( $6.02 \times 10^{21}$ atoms)
( $6.02 \times 10^{22}$ atoms)
( $6.0133 \times 10^{24}$ molecules of $\mathrm{H}_{2} \mathrm{O}$; and each water contains 3 atoms for a total of $1.80 \times 10^{25}$ atoms)
8. What is the mass, in grams, of:
a) 0.0100 mol of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.38 \mathrm{~g})$
b) $\quad 6.0 \mathrm{~mol}$ of NaOH ( 240 g )
c) $\quad 0.50 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (49 g)
d) $\quad 3.60 \times 10^{24}$ molecules of $\mathrm{H}_{2} \mathrm{O}$ (108 g)


Do ya dig it??
e) $1.00 \times 10^{23}$ molecules of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad(29.9 \mathrm{~g})$
f) $\quad 1.0 \times 10^{20}$ atoms of chlorine $\quad\left(0.0059 \mathrm{~g}\right.$ or $\left.5.9 \times 10^{-3} \mathrm{~g}\right)$
g) $\quad 44.8 \mathrm{~L}^{\text {of } \mathrm{Cl}_{2}}$ gas at STP (142 g)
h) $\quad 1.00 \mathrm{~L}^{2} \mathrm{CO}_{2}$ gas at STP $(1.96 \mathrm{~g})$
2. At STP, what is the volume, in litres, of:
a) 2.65 mol of butane, $\mathrm{C}_{4} \mathrm{H}_{10}$ (59.4 L)
b) $\quad 2.65 \mathrm{~g}$ of butane (1.02 L)
c) $2.65 \times 10^{24}$ molecules of butane (98.6 L)
3. Calculate the following (assume all gases are at STP):
a) the molar mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
b) the mass of 0.250 mol of NaOH
c) the total number of atoms in one molecule of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$
d) the number of molecules in exactly two moles of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$
e) the mass, in grams, of a single molecule of $\mathrm{CCl}_{4}$
f) the number of moles in 20.0 grams of $\mathrm{CaCO}_{3}$
g) the number of moles if there are $9.632 \times 10^{21}$ molecules
h) the number of moles in 60.0 litres of $\mathrm{NO}_{2}$ gas at STP
i) the number of moles of carbon in 10.0 g of $\mathrm{C}_{2} \mathrm{H}_{6}$
j) the number of oxygen atoms in 4.40 g of $\mathrm{NO}_{2}$ gas
k) the volume of $9.0 \times 10^{25}$ molecules of hydrogen gas

1) the mass of sodium in 2.5 g of NaCl
m) the mass of $1.2 \times 10^{23}$ atoms of aluminum
n) the mass, in grams, of exactly one atom of hydrogen
o) the volume of 8.0 grams of propane gas, $\mathrm{C}_{3} \mathrm{H}_{8}$
p) the number of bromine atoms in 20.0 g of $\mathrm{CaBr}_{2}$
$(331.22 \mathrm{~g} / \mathrm{mol})$
$(10.0 \mathrm{~g})$
$4(\mathrm{~K})+1(\mathrm{Fe})+6(\mathrm{C})+6(\mathrm{~N})=17$ atoms
(1.20 $\times 10^{24}$ molecules)
$\left(2.55 \times 10^{-22} \mathrm{~g}\right)$
( 0.200 mol )
( 0.0160 mol or $1.60 \times 10^{-2} \mathrm{~mol}$ )
( 2.68 mol )
( 0.665 moles of C)
( $1.15 \times 10^{23}$ atoms of O )
(3348.84 L of gas $\left.=3.3 \times 10^{3} \mathrm{~L}\right)$
( 0.98 g of sodium)
( 5.4 g )
$\left(1.68 \times 10^{-24} \mathrm{~g}\right)$
(4.1 L)
(1.20 $\times 10^{23}$ atoms)

## Simplest and Molecular Formulas, Practice Questions

## A. Simplest (Empirical) Formulas

1. Calculate the simplest formulas for compounds with:
a) $70.9 \% \mathrm{~K}$ and $29.1 \% \mathrm{~S}$
b) $56.4 \% \mathrm{P}$ and $43.6 \% \mathrm{O}$
c) $43.4 \% \mathrm{P}$ and $56.6 \% \mathrm{O}$
d) $26.6 \% \mathrm{~K}, 35.4 \% \mathrm{Cr} \& 38.0 \% \mathrm{O}$

## B. Molecular Formulas

1. Find the molecular formulas for these compounds.
a) $39.9 \% \mathrm{C}, 6.7 \% \mathrm{H}, 53.4 \% \mathrm{O}$
b) $40.3 \% \mathrm{~B}, 52.2 \% \mathrm{~N}, 7.5 \% \mathrm{H}$
c) $20.2 \% \mathrm{Al}, 79.8 \% \mathrm{Cl}$

Molar Mass $\quad 120.0 \mathrm{~g} / \mathrm{mol}$
Molar Mass $\quad 80.4 \mathrm{~g} / \mathrm{mol}$
Molar Mass $\quad 267.0 \mathrm{~g} / \mathrm{mol}$
2. The composition of nicotine is $74.0 \%$ carbon, $8.7 \%$ hydrogen and $17.3 \%$ nitrogen. The molar mass of the compound is $162 \mathrm{~g} / \mathrm{mol}$. Find the molecular formula of nicotine.
3. A gaseous compound contains $82.7 \%$ carbon and $17.3 \%$ hydrogen by weight. 1.00 litre of this compound weighs 2.59 grams at STP. What is the molecular formula of the substance?
4. 1.0 gram of a compound containing $30.5 \%$ nitrogen and $69.5 \%$ oxygen occupies 243 mL measured at STP. What is the molecular formula of this compound?

Answers:
A. Simplest Formulas
1a) $\mathrm{K}_{2} \mathrm{~S}$
b) $\mathrm{P}_{2} \mathrm{O}_{3}$
c) $\mathrm{P}_{2} \mathrm{O}_{5}$
d) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. Molecular Formulas
1a) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
b) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
c) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
2. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$
3. $\mathrm{C}_{4} \mathrm{H}_{10}$
4. Simplest formula is $\mathrm{NO}_{2}, \#$ of moles $=\mathrm{vol} / 22.4 \mathrm{~L} / \mathrm{mol}=0.0108 \mathrm{~mol}$ Then, molar mass $=$ mass $/$ \# of moles $=1.0 \mathrm{~g} / 0.0108 \mathrm{~mol}=92.6 \mathrm{~g} / \mathrm{mol}$ Then, use MM to find molecular formula, which is $\mathrm{N}_{2} \mathrm{O}_{4}$


[^0]:    Answers:
    1b) $92.31 \% 4$ sig digs
    2b) $87.0 \% 3$ sig digs
    3) $25.9 \%$ nitrogen and $74.1 \%$ oxygen, 3 sig digs

    4b) $20.12 \% 4$ sig digs
    5b) $60.3 \% 3$ sig digs
    5c) $39.7 \% 3$ sig digs
    6) 1.5 g of oxygen, 2 sig digs

