Unit 3, Lesson 04: Calorimetry: Using Q to Calculate $\Delta \mathbf{H}$
The heat (Q) lost or gained by a system during a chemical reaction at constant pressure is equal to the enthalpy change $(\Delta \mathrm{H})$ for the reaction.

- to calculate Q for the system, we use the equation:

where $\mathrm{m}=$ the mass of the system (the reactants and products)
$\mathrm{c}=$ the specific heat capacity of the system
$=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ for an aqueous system
$\Delta \mathrm{T}=$ the change in temperature of the system
if the reaction is carried out in aqueous solution in a coffee cup calorimeter, the heat lost to the surroundings will be negligible, so we can calculate Q

Sample Calculation: The Molar Heat of Solution of $\mathbf{N a O H}$ in Water

1.046 g of sodium hydroxide is dissolved in 100.0 mL of water in a
 styrofoam cup. The initial temperature of the water before adding the sodium hydroxide is $23.2^{\circ} \mathrm{C}$. After all of the sodium hydroxide has dissolved, the temperature of the water is $27.5^{\circ} \mathrm{C}$. Calculate the $\Delta \mathrm{H}$ per mole for NaOH dissolving in water (the molar enthalpy (heat) of solution of sodium hydroxide).

$$
\mathrm{NaOH}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaOH}(\mathrm{aq}) \quad \Delta \mathrm{H}=?
$$

1. To calculate the amount of heat (Q) released when the NaOH dissolves:

The density of pure water is $1.00 \mathrm{~g} / \mathrm{mL}$, so the mass of water is 100.0 g

$$
\text { Given: } \begin{aligned}
\mathrm{m} & =100.0 \mathrm{~g} \\
\mathrm{c} & =4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \\
\Delta \mathrm{~T} & =\mathrm{T}_{2}-\mathrm{T}_{1} \\
& =27.5^{\circ} \mathrm{C}-23.2^{\circ} \mathrm{C} \\
& =4.3^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{m} \cdot \mathrm{c} \cdot \Delta \mathrm{~T} \\
& =100.0 \mathrm{~g} \times 4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times 4.3^{\circ} \mathrm{C} \\
& =1799.12 \mathrm{~J} \\
& =1.799 \mathrm{~kJ} \text { (carry at least } 4 \text { sig digs) }
\end{aligned}
$$

2. At constant pressure (when the reaction produces no gases), then $\Delta \mathrm{H}=-\mathrm{Q}$

$$
\Delta \mathrm{H}=-1.799 \mathrm{~kJ}
$$

3. To find $\Delta \mathrm{H} / \mathrm{mol}$ of NaOH , we must convert this value to kJ per mole of NaOH :
$1.046 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol}}{40.00 \mathrm{~g}}=0.02615 \mathrm{~mol}$ of NaOH
Then: $\quad \frac{\Delta \mathrm{H}}{\mathrm{mol}}=\frac{-1.799 \mathrm{~kJ}}{0.02615 \mathrm{~mol}}$

$$
=-68.8 \mathrm{~kJ} / \mathrm{mol} \mathrm{NaOH} \text { (you can report either } 2 \text { or } 3 \text { sig digs) }
$$

Therefore, the $\Delta \mathrm{H}$ for dissolving one mole of NaOH is $-68.8 \mathrm{~kJ} / \mathrm{mol}$.

