Answers to Review for Unit 3: Thermochemistry

1. c	11. d	21. a	31. d	41. c
2. b	12. c	22. d	32. c	42. b
3. d	13. a	23. a	33. a	43. a
4. b	14. d	24. a	34. b	44. a
5. c	15. d	25. c	35. c	45. d
6. d	16. b	26. c	36. a	46. a
7. c	17. c	27. с	37. c	47. a
8. a	18. a	28. b	38. d	48. b
9. a	19. d	29. c	39. d	49. d
10. c	20. c	30. d	40. b	50. d

Answers to multiple choice:

Answers for Calculations. Be sure to show an equation, substitution step and your final answer. Include all units. Round your final answer to the correct number of sig digs.

1. In an experiment, 5.260 g of potassium hydroxide is mixed with a dilute solution of hydrochloric acid. A neutralization (double displacement) reaction occurs. The hydrochloric acid is in excess. The following date are obtained:

Initial temperature of hydrochloric acid	24.5 °C
Volume of hydrochloric acid	200.0 mL
Final temperature of solution after mixing	31.4 °C

Calculate the molar heat of reaction (ΔH) per mole of potassium hydroxide.

KOH (s) + HCl (aq) \rightarrow KCl (aq) + H₂O (l) $\Delta H = ?$

- The temperature of the water in the HCl (the system) increases after the potassium hydroxide has dissolved. This is an exothermic reaction (the reaction releases heat), so the sign for ΔH will be negative.
- Calculate the amount of heat (Q) released when the KOH reacts:

Given: $m = 200.0 \text{ g}$	$O = m \cdot c \cdot \Delta T$
$c = 4.184 \text{ J/g}^{\circ}\text{C}$	$= 200.0 \text{ g x } 4.184 \text{ J/g}^{\circ}\text{C} \text{ x } 6.9 ^{\circ}\text{C}$
$\Delta T = T_2 - T_1$	= 5773.92 J
= 31.4 °C - 24.5 °C	= 5.774 kJ
$= 6.9 ^{\circ}\mathrm{C}$	

- The heat absorbed by the system (5.774 kJ) is equal to the heat released when KOH reacted; therefore, when 5.260 g of KOH is dissolved, it releases 5.774 kJ of thermal energy.
- $Q = -\Delta H$ so $\Delta H = -5.774 \text{ kJ}$
- To find Δ H/mol, divide Δ H by the number of moles of KOH:

n _{KOH}	$= \underline{m}$. MM _{KOH}	Δ H/mole = Δ H reaction moles KOH reacted
	$= \frac{5.260 \text{ g}}{56.11 \text{ g/mol}}$ = 0.09374 mol of KOH	$= \frac{-5.774 \text{ kJ}}{0.09374 \text{ mol}}$
	- 0.07574 mor or Kom	= -61.6 kJ/mol KOH (3 sig digs)

2. An experiment was conducted using the reaction:

$$HNO_{3(aq)} + KOH_{(aq)} \rightarrow H_2O_{(l)} + KNO_{3(aq)}$$

The following data were collected:

	55 0T
volume of 1.3-M HNO ₃	55.0 mL
initial temperature of HNO ₃	23.5 °C
volume of 1.3-M KOH	60.0 mL
initial temperature of KOH	23.5 °C
final temperature after mixing	31.8 °C

Calculate the heat of reaction, ΔH , expressed in kJ per mole of HNO₃.

- The temperature of the water in the HNO₃ (the system) increases after the potassium hydroxide has dissolved. This is an exothermic reaction (the reaction releases heat), so the sign for Δ H will be negative.
- Calculate the amount of heat (Q) released when the KOH and HNO₃ react:

Given:

```
Total volume of mixture = 115.0 mL

m = 115.0 \text{ g}

c = 4.184 \text{ J/g}^{\circ}\text{C}

\Delta T = T_2 - T_1

= 31.8 ^{\circ}\text{C} - 23.5 ^{\circ}\text{C}

= 8.3 ^{\circ}\text{C}

Q = m · c · \Delta T

= 115.0 \text{ g x } 4.184 \text{ J/g}^{\circ}\text{C x } 8.3 ^{\circ}\text{C}

= 3993.63 \text{ J}

= 3.994 \text{ kJ}
```

- The heat absorbed by the system (3.994 kJ) is equal to the heat released when the KOH and HNO_3 reacted
- $Q = -\Delta H$ so $\Delta H = -3.994 \text{ kJ}$
- To find Δ H/mol, divide Δ H by the number of moles of HNO₃:

n _{HNO3}	$= C \times V$	Δ H/mole = Δ H reaction
		moles HNO ₃ reacted
	$= 1.3 \text{ mol/L} \times 0.0550 \text{ L}$	
		= <u>- 3.994 kJ</u>
	$= 0.0715 \text{ mol HNO}_3$	0.0715 mol
		= - 55.9 kJ/mol HNO ₃

= -56 kJ/mol HNO_3 (2 sig digs from 1.3 M)

3.	$\Delta H^\circ = -2728 \text{ kJ}$	process:	equation (1) x 2, equation (2) x 3, equation (3) flipped
4.	$\Delta H^{\circ} = -699.5 \text{ kJ}$	process:	equation (4) flipped equation (1) x ¹ / ₂ equation (2) x 3/2 equation (3) x 3
		alternatively:	equation (4) flipped and multiplied by 2 equation (1) as is equation (2) x 3 equation (3) x 6 then divide the final equation and ΔH by 2
5.	$\Delta H^{\circ} = + 221.4 \text{ kJ}$	process:	equation (3) as is equation (1) as is equation (2) flipped equation (4) flipped and multiplied by 2

6. For the reaction: $2 \text{ HNO}_{3(l)} + \text{Mg(OH)}_{2(s)} \rightarrow \text{Mg(NO}_{3})_{2(aq)} + 2 \text{ H}_2O_{(l)}$ $\Delta H^\circ \text{rxn} = \Sigma \Delta H^\circ_f \text{ products} - \Sigma \Delta H^\circ_f \text{ reactants}$ $= [\Delta H^\circ_f \text{ Mg(NO}_{3})_{2(aq)} + 2 (\Delta H^\circ_f \text{ H}_2O_{(l)})] - [2 (\Delta H^\circ_f \text{ HNO}_{3(l)}) + \Delta H^\circ_f \text{ Mg(OH)}_{2(s)}]$ = [-875.0 kJ + 2 (-285.8 kJ)] - [2 (-174.1 kJ) + (-924.5 kJ)] = [-1446.6 kJ] - [-1272.7 kJ]= -173.9 kJ 7. Liquid butane, C_4H_{10} , burns to produce water vapour and carbon dioxide. The ΔH for the reaction is -2662.8 kJ/mol butane burned. Use this value and ΔH°_{f} values on page 597 to calculate the heat of formation (ΔH°_{f}) of butane.

 $C_{4}H_{10}(l) + 13/2 \quad O_{2}(g) \rightarrow 4 \quad CO_{2}(g) + 5 \quad H_{2}O(g) \qquad \Delta H = -2662.8 \text{ kJ/mol butane}$ $\Delta H^{\circ} rxn = \Sigma \Delta H^{\circ}{}_{f} \text{ products} - \Sigma \Delta H^{\circ}{}_{f} \text{ reactants}$ $-2662.8 \text{ kJ} = [4 (\Delta H^{\circ}{}_{f} \text{ CO}_{2(g)}) + 5 (\Delta H^{\circ}{}_{f} \text{ H}_{2}O_{(g)})] - [\Delta H^{\circ}{}_{f} \text{ C}_{4}\text{H}_{10(l)}]$ $-2662.8 \text{ kJ} = [4 (-393.5 \text{ kJ}) + 5 (-241.8 \text{ kJ})] - [\Delta H^{\circ}{}_{f} \text{ C}_{4}\text{H}_{10(l)}]$ $-2662.8 \text{ kJ} = [-2783 \text{ kJ}] - [\Delta H^{\circ}{}_{f} \text{ C}_{4}\text{H}_{10(l)}]$ $120.2 \text{ kJ} = - [\Delta H^{\circ}{}_{f} \text{ C}_{4}\text{H}_{10(l)}]$ $\Delta H^{\circ}{}_{f} \text{ C}_{4}\text{H}_{10(l)} = -120.2 \text{ kJ}$

8. Use bond energies to estimate the enthalpy change (Δ H) for the reaction when solid nitrogen triiodide (NI₃, a contact explosive) decomposes to produce nitrogen gas and pure iodine vapour:

$$2 \operatorname{NI}_{3(s)} \rightarrow \operatorname{N}_{2(g)} + 3 \operatorname{I}_{2(v)}$$

Express your answer in kJ/mol of NI₃.

$$\begin{array}{c} \mathbf{I} - \mathbf{N} - \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{array} + \begin{array}{c} \mathbf{I} - \mathbf{N} - \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{array} \rightarrow \begin{array}{c} \mathbf{N} \equiv \mathbf{N} \\ \mathbf{N} \equiv \mathbf{N} \\ \mathbf{I} \\ \mathbf{I} \end{array} + 3 \begin{array}{c} \mathbf{I} - \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{array}$$

 ΔH° rxn = Σ bond energy reactants - Σ bond energy products

- = $\Sigma [6(N-I)] [1(N \equiv N) + 3(I-I)]$
- = $\Sigma [6(159 \text{ kJ})] [1(945 \text{ kJ}) + 3(151 \text{ kJ})]$
- = 954 kJ 1398 kJ
- = -444 kJ for 2 moles of NI₃ or -222 kJ per mole of NI₃

9. Use bond energies to estimate ΔH for the reaction:

 $C_2H_4 \hspace{.1in} + \hspace{.1in} Cl_2 \hspace{.1in} \rightarrow \hspace{.1in} C_2H_4Cl_2$

Express your answer in kJ/mol of C₂H₄.

Express your answer in kJ/mol of C₂H₄.

$$H - C \equiv C - H + : Cl - Cl = Cl + H - C - C - H + H H H$$

$$H - H H H H H$$

 ΔH° rxn = Σ bond energy reactants - Σ bond energy products

$$= \Sigma [4 (C - H) + 1 (C = C) + 1 (Cl - Cl)] - [1 (C - C) + 4 (C - H) + 2 (C - Cl)]$$

= $\Sigma [4 (338 kJ) + 1 (607 kJ) + 1 (243 kJ)] - [1 (347 kJ) + 4 (338 kJ) + 2 (397 kJ)]$
= 2202 kJ - 2493 kJ

= -291 kJ for 1 mole of C₂H₄