A. Definition Questions: you should be able to use or apply the following terms. Be able to write complete definitions for the terms in bold.

energy	temperature	standard state
potential energy	heat	allotropes
kinetic energy	specific heat capacity	standard heat of formation
enthalpy	endothermic	bond energy

temperature
heat
specific heat capacity
exothermic

standard state
allotropes
standard heat of formation bond energy

1. Identify the INCORRECT statement below:
a) potential energy is the energy an object has because of its position relative to and attraction toward another object
b) energy is the ability to do work
c) in an exothermic reaction, the enthalpy of the products is higher than the enthalpy of the reactants
d) in an ordinary chemical reaction, energy is neither created nor destroyed
2. A particular chemical reaction has $\Delta \mathrm{H}^{\circ}=+250 \mathrm{~kJ} / \mathrm{mol}$. Which of the following statements is/are true concerning this reaction?
I) Heat moves from the system to the surroundings
II) The reaction is endothermic
III) The enthalpy of the products is lower than the enthalpy of the reactants
a) I and II only
c) II and III only
b) II only
d) I, II and III are true
3. Which of the following molecules has the highest enthalpy?
a) propane
c) pentane
b) cyclopropane
d) cyclooctane
4. Which statement is INCORRECT about endothermic reactions?
a) the system absorbs energy from its surroundings
b) the enthalpy of products is lower than the enthalpy of the reactants
c) the thermal kinetic energy of the surroundings will decrease
d) the enthalpy change will have a positive value
5. All of the following statements are true EXCEPT:
a) $\Delta \mathrm{H}$ for a reaction is equal in magnitude but opposite in sign to $\Delta \mathrm{H}$ for the reverse reaction
b) enthalpy is a state function
c) the overall change in enthalpy for a reaction depends on the number of steps in a reaction
d) chemical potential energy contributes to the total enthalpy of a substance
6. What is the definition of the temperature of a substance?
a) the total heat content of a the particles in a substance
b) the speed of the fastest particles in the substance
c) the speed of the slowest particles in the substance
d) the average kinetic energy of the particles in a system
7. Which of the following is the standard state of carbon at SATP?
a) C as $\mathrm{CO}_{2}(\mathrm{~g})$
b) C as $\mathrm{CH}_{4}(\mathrm{~g})$
c) C as graphite (s)
d) C as diamond (s)
8. What is the definition of the specific heat capacity of a substance?
a) the amount of energy required to raise the temperature of 1 g of a substance by $1^{\circ} \mathrm{C}$
b) the amount of energy required to raise the temperature of 1 mol of substance by $1^{\circ} \mathrm{C}$
c) the amount of energy required to raise the temperature of 1 kg of a substance by $1^{\circ} \mathrm{C}$
d) the amount of energy required to raise the temperature of 1 g of a substance by $100^{\circ} \mathrm{C}$
9. Which substance has the highest specific heat capacity?
a) water
c) aluminum
b) iron
d) sand
10. When a sample of potassium nitrate is dissolved in water, the temperature of the water changes from $23.5^{\circ} \mathrm{C}$ to $20.3^{\circ} \mathrm{C}$. Which statement describes this process?
a) this process is exothermic, so the surroundings get cooler
b) this process is exothermic, so the surroundings get warmer
c) this process is endothermic, so the surroundings get cooler
d) this process is endothermic, so the surroundings get warmer
11. Which of the following statements is/are true about an exothermic reaction?
I) the energy absorbed in bond breaking is more than the energy released in bond formation
II) the system absorbs energy
III) the potential energy of the reactants is less than the potential energy of the products
IV) the thermal kinetic energy of the surroundings will increase
a) I and III only
c) II and III only
b) II and IV only
d) IV only
12. Which statement does NOT describe an endothermic reaction?
a) the surroundings cool down
b) $\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}$ is positive
c) heat is released by the system
d) the potential energy of the products is greater than the potential energy of the reactants

B. Stoichiometry with Thermochemical Equations:

13. Given: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(l) \rightarrow 2 \operatorname{HBr}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=-72.8 \mathrm{~kJ}$

Calculate the amount of energy absorbed or released when 15.0 g of $\mathrm{HBr}(g)$ is formed.
a) 6.75 kJ released
b) 4.85 kJ absorbed
c) 13.5 kJ released
d) 607 kJ absorbed
14. How much heat is absorbed when 3.00 grams of SiO_{2} react with excess carbon according to the reaction below? $\Delta \mathrm{H}^{\circ}$ for the reaction is +624.7 kJ .

$$
\mathrm{SiO}_{2}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{SiC}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g})
$$

a) 208 kJ
b) 10.4 kJ
c) 5.06 kJ
d) 31.2 kJ
15. The standard heat of combustion $\left(\Delta \mathrm{H}^{\circ}\right)$ of ethanol is $-1372 \mathrm{~kJ} / \mathrm{mol}$ ethanol. How much heat is released when a 20.0 g sample burns?
a) 68.6 kJ
b) 29.8 kJ
c) $3.16 \times 10^{3} \mathrm{~kJ}$
d) 595 kJ
16. When one mole of methane burns in oxygen, $882 \mathrm{~kJ} / \mathrm{mol}$ of energy is released. If 15.0 g of methane is burned, how much heat is released?
a) 55.0 kJ
b) 824 kJ
c) 58.8 kJ
d) 944 kJ
17. Given the following thermochemical equation: $2 \mathrm{P}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{PBr}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\mathrm{o}}=153 \mathrm{~kJ}$ How much energy must be added to allow the production of 7.12 grams of PBr_{3} ?
a) 4.02 kJ
b) 21.5 kJ
c) 2.01 kJ
d) 10.7 kJ
18. Which thermochemical equation corresponds to the enthalpy diagram shown to the right?
a) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+486.3 \mathrm{~kJ}$
b) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+486.3 \mathrm{~kJ} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})-486.3 \mathrm{~kJ}$
d) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-486.3 \mathrm{~kJ} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

19. Which is the correct enthalpy level diagram for the reaction:

$$
\mathrm{CaO}_{(\mathrm{s})}+3 \mathrm{C}_{(\mathrm{s})}+462.3 \mathrm{~kJ} \rightarrow \mathrm{CaC}_{2(\mathrm{~s})}+\mathrm{CO}_{(\mathrm{g})}
$$

a)

c)

b)

d)

20. Given the following thermochemical equation

$$
2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{HBr}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=1150 . \mathrm{kJ}
$$

What is the change in energy accompanying the production of 1.500 moles of $\mathrm{CO}_{2}(\mathrm{~g})$?
a) 1725 kJ
b) 766.7 kJ
c) 431.3 kJ
d) 9.799 kJ

C. Calorimetry Questions:

- you can recognize these problems because they give data about a temperature change
- identify the substance that is changing temperature. For that substance, use its specific heat capacity (c) and mass along with the temperature change to calculate Q
- memorize the specific heat capacity for water $=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- know the assumptions that are made when doing calorimetry calculations

21. A sample of water with a mass of 210.5 g undergoes a temperature change from $40.83^{\circ} \mathrm{C}$ to $98.73{ }^{\circ} \mathrm{C}$. What is the heat change in kilojoules?
a) 50.99 kJ
b) 242.3 kJ
c) -12.19 kJ
d) +12.19 kJ
22. When 1.75 g of CaCl_{2} dissolves in 125 g of water in a coffee-cup calorimeter, the temperature increases by $2.44^{\circ} \mathrm{C}$. What is the heat change per mole of CaCl_{2} dissolved? Assume that all the heat is absorbed by the water.
a) $-11.3 \mathrm{~kJ} / \mathrm{mol}$ of CaCl_{2}
b) $-1.13 \mathrm{~kJ} / \mathrm{mol}$ of CaCl_{2}
c) $-729 \mathrm{~kJ} / \mathrm{mol}$ of CaCl_{2}
d) $-80.9 \mathrm{~kJ} / \mathrm{mol}$ of CaCl_{2}
23. The specific heat capacity of diamond is $0.5050 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. How much energy is required to heat 25.0 g of diamond from $10.5^{\circ} \mathrm{C}$ to $15.6^{\circ} \mathrm{C}$?
a) 64.4 J
b) 269 J
c) 533 J
d) 2068 J
24. 2.50 g of hydrogen gas is heated from $17.0^{\circ} \mathrm{C}$ to $23.0^{\circ} \mathrm{C}$. The specific heat capacity of hydrogen is $14.267 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. How much energy is absorbed?
a) $2.14 \times 10^{2} \mathrm{~J}$
b) 0.214 J
c) $2.14 \times 10^{2} \mathrm{~kJ}$
d) 0.00214 kJ
25. A 20.0 g sample of aluminum is cooled by $7.50^{\circ} \mathrm{C}$. The specific heat capacity of aluminum is $0.900 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What is the energy change for this sample?
a) 135 kJ
b) 565 J
c) 135 J
d) 628 J
26. 5.50 g of sodium hydroxide is dissolved in 175 mL of water. Using a coffee-cup calorimeter, the temperature change of the water is measured to be $+2.10^{\circ} \mathrm{C}$. The specific heat capacity of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What is the thermochemical equation for this process?
a) $\mathrm{NaOH}_{(\mathrm{s})} \rightarrow \mathrm{NaOH}_{(\mathrm{aq})}+1.54 \mathrm{~kJ}$
b) $\mathrm{NaOH}_{(\mathrm{s})}+1.54 \mathrm{~kJ} \rightarrow \mathrm{NaOH}_{(\mathrm{aq})}$
c) $\mathrm{NaOH}_{(\mathrm{s})} \rightarrow \mathrm{NaOH}_{(\text {aq })}+11.2 \mathrm{~kJ}$
d) $\mathrm{NaOH}_{(\mathrm{s})}+11.2 \mathrm{~kJ} \rightarrow \mathrm{NaOH}_{(\mathrm{aq})}$
27. A mass of 100.0 g of dilute hydrochloric acid is placed in a coffee cup calorimeter. The temperature of the solution is recorded to be $17.5^{\circ} \mathrm{C}$. A piece of magnesium ribbon of mass 0.601 g is placed in the solution and the final temperature is recorded to be $39.6^{\circ} \mathrm{C}$. Calculate the molar enthalpy change for this reaction: $\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
a) $+15.4 \mathrm{~kJ} / \mathrm{mol}$ of Mg
b) $-263 \mathrm{~kJ} / \mathrm{mol}$ of Mg
c) $-374 \mathrm{~kJ} / \mathrm{mol}$ of Mg
d) $+5.56 \mathrm{~kJ} / \mathrm{mol}$ of Mg

D. Hess's Law Questions:

- you can recognize these problems because you will be given an equation with unknown $\Delta \mathrm{H}$ (the target equation) and at least 2 other equations with their $\Delta \mathrm{H}$ values
- on the test, you will be asked to show your work for one calculation

28. Calculate $\Delta \mathrm{H}^{\mathrm{o}}$ for the reaction: $\quad \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ given the following:
(1) $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{NaOH}(\mathrm{s})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})$

$$
\begin{aligned}
\Delta \mathrm{H}^{\mathrm{o}} & =-146 \mathrm{~kJ} \\
\Delta \mathrm{H}^{\mathrm{o}} & =+418 \mathrm{~kJ} \\
\Delta \mathrm{H}^{\mathrm{o}} & =+259 \mathrm{~kJ}
\end{aligned}
$$

(2) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(\mathrm{s})+\mathrm{SO}_{3}(\mathrm{~g})$
(3) $2 \mathrm{Na}_{2} \mathrm{O}$ (s) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a) +823 kJ
b) -581 kJ
c) -435 kJ
d) +531 kJ
29. Given equations (1) and (2), calculate the enthalpy change for equation (3).
(1) $\mathrm{Pb}_{(\mathrm{s})}+\mathrm{PbO}_{2(\mathrm{~s})}+2 \mathrm{SO}_{3(\mathrm{~g})} \rightarrow 2 \mathrm{PbSO}_{4(\mathrm{~s})}$
$\Delta \mathrm{H}^{\mathrm{o}}=-775 \mathrm{~kJ}$
(2) $\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
$\Delta \mathrm{H}^{\mathrm{o}}=-133 \mathrm{~kJ}$
(3) $\mathrm{Pb}_{(\mathrm{s})}+\mathrm{PbO}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{SO}_{4(\text { aq })} \rightarrow 2 \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
a) -908 kJ
b) -642 kJ
c) -509 kJ
d) +642 kJ
30. Given that: $\quad \mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-296.8 \mathrm{~kJ} / \mathrm{mol}$

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=+197.8 \mathrm{~kJ} / \mathrm{mol}
$$

Determine the enthalpy change of the reaction: $2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
a) -99 kJ
b) -495 kJ
c) +495 kJ
d) -791.4 kJ
31. Use the following reactions to calculate $\Delta \mathrm{H}^{\circ}$ for: $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-185.0 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-483.7 \mathrm{~kJ}
\end{array}
$$

a) +113.7 kJ
b) -298.7 kJ
c) +298.7 kJ
d) -113.7 kJ
32. From the following enthalpies of reaction find $\Delta \mathrm{H}^{\circ}$ for: $2 \mathrm{HCl}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(l)+\mathrm{Cl}_{2}(\mathrm{~g})$:

$$
\begin{aligned}
& 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{Cl}_{2}(\mathrm{~g}) \\
& 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{HF}(l) \\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

$$
\Delta \mathrm{H}=-148.4 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}=-600.0 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}=-285.8 \mathrm{~kJ}
$$

a) -462.6 kJ
b) -840 kJ
c) -988.4 kJ
d) +1063 kJ
33. From the following data:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H^{0}=-890 . \mathrm{kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta H^{0}=44.0 \mathrm{~kJ} / \mathrm{mol}$
Calculate the enthalpy of the reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H^{\mathrm{o}}=?$
a) -802 kJ
b) -846 kJ
c) -890 kJ
d) -934 kJ
34. Given equations (I), (II), and (III), calculate the standard enthalpy of formation of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, as shown in equation (IV).

$$
\begin{equation*}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \tag{I}
\end{equation*}
$$

$$
\Delta \mathrm{H}^{\mathrm{o}}=-393.5 \mathrm{~kJ}
$$

(II) $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l)
$\Delta \mathrm{H}^{\mathrm{o}}=-285.8 \mathrm{~kJ}$
(III)
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}^{\mathrm{o}}=-2598.8 \mathrm{~kJ}$
(IV)

$$
2 \mathrm{C}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

a) 253.6 kJ
b) 226.6 kJ
c) 1801 kJ
d) -3278 kJ

E. Standard Enthalpy (Heat) of Formation ($\Delta \mathrm{H} f$) Questions:

- You will be given a data table with copies of the charts on page 597 and 599 for the test.
- Know the standard states of oxygen, carbon, phosphorus and sulfur
- Be able to write/recognize standard formation equations for compounds
- There are two kinds of calculations you should recognize:
i) calculate the enthalpy change $(\Delta \mathrm{H})$ for a reaction using standard heats of formation $\left(\Delta \mathrm{H}^{\mathrm{o}}\right)$
ii) if you are given the heat of reaction for one equation (for example, heat of combustion $(\Delta \mathrm{H})$ for a substance), be able to use this along with standard heats of formation and "work backwards" to calculate the heat of formation for one of the substances in the initial equation you are given

35. Which thermochemical equation is the standard formation equation for $\mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})$?
a) $\mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})$
b) $\mathrm{N}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})$
c) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})$
d) $\mathrm{N}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g})+4 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})$
36. For which of the following is $\Delta \mathrm{H}^{\mathrm{o}}$ zero?
a) $\mathrm{N}_{2}(\mathrm{~g})$
b) $\mathrm{O}_{3}(\mathrm{~g})$
c) $\mathrm{S}_{8}(\mathrm{~s})$
d) $\mathrm{He}_{2}(\mathrm{~g})$
37. Which of the following is a formation reaction?
a) $\mathrm{PCl}_{3}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{POCl}_{3}(\mathrm{~g})$
c) $\mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
b) $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
d) all of the above are formation equations
38. Which of the following is NOT a formation reaction?
a) $1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{HBr}(\mathrm{g})$
b) $2 \mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
c) $\mathrm{Ca}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s})$
d) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{3}(\mathrm{l}) \rightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
39. Using standard enthalpies of formation, calculate the enthalpy of the reaction:

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{l})}+2 \mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a) 904 kJ
b) -724 kJ
c) -130 kJ
d) 130 kJ
40. Using standard enthalpies of formation, calculate the enthalpy of the reaction:

$$
2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a) -2794 kJ
b) -1036 kJ
c) -1077 kJ
d) -1124 kJ
41. Use standard heats of formation to calculate $\Delta \mathrm{H}^{\circ}$ for the following reaction:

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow 3 \mathrm{FeO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

a) 54.1 kJ
b) -202 kJ
c) 19.4 kJ
d) -50.0 kJ
42. Liquid butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, burns to produce water vapour and carbon dioxide. The reaction produces 2662.8 kJ of energy per mole of butane burned. Use this information, along with standard heats of formation, to calculate the $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (the heat of formation) for butane.
a) 120.2 kJ
b) -120.2 kJ
c) +5446 kJ
d) -5446 kJ
43. Using molar enthalpies of formation, determine the heat of reaction for the combustion of 1.000 mole of methanol.

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{v})
$$

a) -637.9 kJ
b) -440.1 kJ
c) -874.5 kJ
d) -396.1 kJ
44. Use standard heats of formation to calculate the enthalpy change for the reaction:

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{CH}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{HCN}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) -939.6 kJ
b) +1123 kJ
c) -1204 kJ
d) +135 kJ
45. Calculate the heat of formation for liquid pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$, given that the combustion of pentane produces $3509.1 \mathrm{~kJ} / \mathrm{mol}$ (the state of the water produced is vapour).
a) $171.2 \mathrm{~kJ} / \mathrm{mol}$
b) $-171.2 \mathrm{~kJ} / \mathrm{mol}$
c) $-90.8 \mathrm{~kJ} / \mathrm{mol}$
d) $+90.8 \mathrm{~kJ} / \mathrm{mol}$

F. Bond Energy Questions

46. Use bond energies to estimate the heat of reaction $\left(\Delta \mathrm{H}^{\circ}\right)$ for:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g})
$$

a) -496 kJ
b) -857 kJ
c) -1478 kJ
d) -586 kJ
47. Use bond energies to estimate the heat of reaction $\left(\Delta \mathrm{H}^{\circ}\right)$ for:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCOOH}(\mathrm{l})
$$

a) 25.0 kJ
b) -4.00 kJ
c) +301 kJ
d) +272 kJ
48. Use bond energies to estimate the heat of reaction $\left(\Delta \mathrm{H}^{\circ}\right)$ for:

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

a) $+820 . \mathrm{kJ}$
b) $-100 . \mathrm{kJ}$
c) -394 kJ
d) +526 kJ

G. Comparing Energy in Physical, chemical and Nuclear Changes

49. Which involves the largest energy change?
a) 1 mol of water boiling
b) 1 tonne of TNT exploding
c) the daily electrical output of the hydroelectric generating stations at Niagara Falls
d) the output of all the CANDU nuclear reactors in North America
50. Which process produces the most energy?
a) cooking
c) dissolving acid in water
b) melting a glacier
d) the sun shining

You will be asked to show your work for several calculations. For example:

1. In an experiment, 5.260 g of potassium hydroxide is mixed with a dilute solution of hydrochloric acid. A neutralization (double displacement) reaction occurs. The hydrochloric acid is in excess. The following date are obtained:

Initial temperature of hydrochloric acid	$24.5^{\circ} \mathrm{C}$
Volume of hydrochloric acid	200.0 mL
Final temperature of solution after mixing	$31.4^{\circ} \mathrm{C}$

Calculate the molar heat of reaction (ΔH) per mole of potassium hydroxide.
2. An experiment was conducted using the reaction:

$$
\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{KNO}_{3(\mathrm{aq})}
$$

The following data were collected:
volume of 1.3-M HNO 3
initial temperature of HNO_{3}
volume of $1.3-\mathrm{M} \mathrm{KOH}$
initial temperature of KOH
final temperature after mixing
55.0 mL
$23.5^{\circ} \mathrm{C}$
60.0 mL
$23.5^{\circ} \mathrm{C}$
$31.8^{\circ} \mathrm{C}$

Calculate the heat of reaction, $\Delta \mathrm{H}$, expressed in kJ per mole of HNO_{3}.
3. Find $\Delta \mathrm{H}$ for

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+4 \mathrm{ClF}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{HF}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

Given: (1)

$$
\begin{array}{lll}
\text { (1) } & 2 \mathrm{ClF}_{3}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-1196 \mathrm{~kJ} \\
\text { (2) } & \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-622.0 \mathrm{~kJ} \\
\text { (3) } & 4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-1530 . \mathrm{kJ}
\end{array}
$$

4. Use the following equations to determine the heat of formation of solid aluminum chloride.
(1) $\quad 2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})}$

$$
\begin{align*}
& \Delta \mathrm{H}=-1049 \mathrm{~kJ} \\
& \Delta \mathrm{H}=-184 \mathrm{~kJ} \\
& \Delta \mathrm{H}=-75 \mathrm{~kJ} \tag{3}\\
& \Delta \mathrm{H}=-326 \mathrm{~kJ} \tag{4}
\end{align*}
$$

(2) $\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$

$$
\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{HCl}_{(\mathrm{aq})}
$$

$$
\mathrm{AlCl}_{3(\mathrm{~s})} \rightarrow \mathrm{AlCl}_{3(\mathrm{aq})}
$$

5. Find $\Delta \mathrm{H}$ for: $\quad \mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$

Given: (1) $\quad \mathrm{Zn}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{~s})}$

$$
\Delta \mathrm{H}=-41.5 \mathrm{~kJ}
$$

(2) $\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$
$\Delta \mathrm{H}=-184.4 \mathrm{~kJ}$
(3) $\quad \mathrm{ZnCl}_{2(\mathrm{~s})} \rightarrow \mathrm{ZnCl}_{2 \text { (aq) }}$
$\Delta \mathrm{H}=-71.1 \mathrm{~kJ}$
$\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{HCl}_{(\mathrm{aq})}$
$\Delta \mathrm{H}=-74.8 \mathrm{~kJ}$
6. The $\Delta H^{\circ}{ }_{\mathrm{f}}$ of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}=-875.0 \mathrm{~kJ} / \mathrm{mol}$. Use this value and the heats of formation of the compounds on page 597 to calculate ΔH° for the equation below:

$$
2 \mathrm{HNO}_{3(l)}+\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

7. Liquid butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, burns to produce water vapour and carbon dioxide. The $\Delta \mathrm{H}$ for the reaction is $-2662.8 \mathrm{~kJ} / \mathrm{mol}$ butane burned. Use this value and $\Delta \mathrm{H}^{\circ} \mathrm{f}$ values on page 597 to calculate the heat of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\right)$ of butane.
8. Use bond energies to estimate the enthalpy change $(\Delta \mathrm{H})$ for the reaction when solid nitrogen triiodide (NI_{3}, a contact explosive) decomposes to produce nitrogen gas and pure iodine vapour:

$$
2 \mathrm{NI}_{3(\mathrm{~s})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{I}_{2(\mathrm{v})}
$$

Express your answer in $\mathrm{kJ} / \mathrm{mol}$ of NI_{3}.
9. Use bond energies to estimate $\Delta \mathrm{H}$ for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}
$$

Express your answer in $\mathrm{kJ} / \mathrm{mol}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$.

