Page 272

1. Reaction: cyclopropane $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right) \rightarrow$ propene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$

Propene is produced at the same rate that cyclopropane is consumed. If cyclopropane is consumed at a rate of $0.25 \mathrm{~mol} / \mathrm{s}$, then propene is produced at $0.25 \mathrm{~mol} / \mathrm{s}$.
2. Reaction: $\underline{4 \mathrm{NH}_{3}} \underline{(\mathrm{~g})}+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+\underline{6 \mathrm{H}_{2}} \underline{\mathrm{O}}(\mathrm{g})$

$\frac{4}{4} \mathrm{~mol} / \mathrm{L} / \mathrm{s}$	$=$
x	

Cross multiply: $\quad 4 \mathrm{x}=6 \times 0.068 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$

$$
\mathrm{x}=0.10 \mathrm{~mol} / \mathrm{L} / \mathrm{s} \quad(2 \operatorname{sig} \mathrm{digs})
$$

Therefore, water is produced at a rate of $0.10 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$
3. Reaction: $4 \mathrm{HBr}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

HBr is consumed two times faster than Br_{2} is formed, so;
rate of change in $\mathrm{HBr}=2 \mathrm{x}$ rate of change in Br_{2}
or rate of change in $\mathrm{Br}_{2}=1 / 2$ rate of change of HBr

Answers to Homework on Handout:

a) Completed data table for the reaction:

Pressures of Gases Measured for the
Decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Time (\mathbf{s})	Pressure $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}(\mathbf{a t m})$	Pressure $\mathbf{N O}_{\mathbf{2}}(\mathbf{a t m})$
0.00	20.0	0.0
0.60	$20.0-1 / 2(4.2)=17.9$	4.2
1.20	$20.0-1 / 2(7.2)=16.4$	7.2
1.80	$20.0-1 / 2(9.6)=15.2$	9.6
2.40	$20.0-1 / 2(11.2)=14.4$	11.2
3.00	$20.0-1 / 2(12.8)=13.6$	12.8
3.60	$20.0-1 / 2(13.4)=13.3$	13.4
4.20	$20.0-1 / 2(14.2)=12.9$	14.2
4.80	$20.0-1 / 2(15.0)=12.5$	15.0
5.40	$20.0-1 / 2(15.4)=12.3$	15.4
6.00	$20.0-1 / 2(15.6)=12.2$	15.6

(You do not need to show your work. I included it so you could see where the numbers came from.)
b) See graph below. Be sure that you include a detailed title, labelled both axes with units. Time must be on the x -axis.

b) Describe the reaction rate in the first 0.60 s of the reaction. Explain why it is like this.

In the first 0.60 s , the reaction rate is very fast. This is because the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is very high, so the reaction is progressing at its maximum rate.
c) Describe the reaction rate in the last 0.60 s of the reaction. Explain why it is like this.

In the last 0.60 s , the reaction rate is very slow, approximately zero. This is because the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is extremely small, so there is very little of it present to react and the reaction essentially stops.
d) Calculate the rate of the reaction for both species during the first 1.80 s (ie. between 0.0 and 1.80 s). Is this the average rate, instantaneous rate or initial rate for the reaction?
 final time - initial time

$$
\begin{aligned}
& =\frac{15.2 \mathrm{~atm}-20.0 \mathrm{~atm}}{1.80 \mathrm{~s}-0.00 \mathrm{~s}} \\
& =-2.67 \mathrm{~atm} / \mathrm{s}, \text { but the " }- \text { " sign is ignored (take the absolute value) } \\
& =2.67 \mathrm{~atm} / \mathrm{s} \text { for } \mathrm{N}_{2} \mathrm{O}_{4}
\end{aligned}
$$

Similarly, the reaction rate for NO_{2} in the first 1.80 s is $9.6 \mathrm{~atm} / 1.80 \mathrm{~s}=5.3 \mathrm{~atm} / \mathrm{s}$

These rates are the average reaction rate for the first 1.80 s of the reaction, and they are approximately equal to the initial rate for the reaction (either of these answers is acceptable because it is the rate so early in the reaction). They are NOT the instantaneous rate for the reaction at 1.80 s .
e) To find the instantaneous rate of reaction for NO_{2} at 3.00 s , draw a tangent to the line at 3.00 s (a line that it perpendicular to the curve at 3.00 s and touches the curve in only one spot). See graph. Calculate the slope of the tangent. This is equal to the rate of the reaction at that point in time.

$$
\begin{aligned}
\text { reaction rate } \mathrm{NO}_{2} & =\frac{\text { final pressure } \mathrm{NO}_{2}}{2} \text { - initial pressure } \mathrm{NO}_{2} \quad \text { final time }- \text { initial time } \quad \text { (pick any } 2 \text { points on the tangent) } \\
& =\frac{19 \mathrm{~atm}-6.8 \mathrm{~atm}}{6.0 \mathrm{~s}-0.0 \mathrm{~s}} \\
& =2.0 \mathrm{~atm} / \mathrm{s} \quad \text { at } 3.00 \mathrm{~s} \quad \text { (you can only read } 2 \text { sig digs from this graph) }
\end{aligned}
$$

therefore, NO_{2} is being produced at a rate of $2.0 \mathrm{~atm} / \mathrm{s}$ at 3.00 s

