Unit 4, Lesson 07: Half-life, Answers to Homework

Page 287: Q 9-12
9. For a first order reaction: $t_{1 / 2}=\frac{0.693}{k}$ and $k=\underline{0.693} \frac{t_{1 / 2}}{k}$
a) $t_{1 / 2}=\frac{0.693}{k}$

$$
=\frac{0.693}{9.2 \mathrm{~s}} 1-
$$

$$
=0.075 \mathrm{~s}
$$

b) After 1 half life, 50% of the cyclopropane will remain

- after 2 half lives, $1 / 2 \times 50 \%$ or 25% will remain
- after 3 half-lives, $1 / 2 \times 25 \%$ or 12.5% will remain
- after 4 half-lives, $1 / 2 \times 12.5 \%$ or 6.25% will remain
10a) $k=\frac{0.693}{t_{1 / 2}}$
c) 128 minutes represents 4 half-lives, so after 4 half-lives there are 3.1×10^{13} molecules /L
$=\frac{0.693}{32 \mathrm{~min}}$
- at 3 half-lives, there would have been $2 \times\left(3.1 \times 10^{13}\right.$ molecules $\left./ \mathrm{L}\right)$
$=0.022 \mathrm{~min}^{1-}$
- at 2 half-lives there would have been $4 \times\left(3.1 \times 10^{13}\right.$ molecules $\left./ \mathrm{L}\right)$
- at 1 half-life there would have been $8 \times\left(3.1 \times 10^{13}\right.$ molecules $\left./ \mathrm{L}\right)$
or $0.00036 \mathrm{~s}^{1-}$
- at time zero, there would have been $16 \times\left(3.1 \times 10^{13}\right.$ molecules $\left./ \mathrm{L}\right)$ or 5.0×10^{14} molecules /L

11. After 10 half- lives, a reaction is essentially over. This is shown:

- after 1 half life, 50% of the reactants will remain
- after 2 half lives, $1 / 2 \times 50 \%$ or 25% will remain
- after 3 half-lives, $1 / 2 \times 25 \%$ or 12.5% will remain
- after 4 half-lives, $1 / 2 \times 12.5 \%$ or 6.25% will remain
- after 5 half-lives, $1 / 2 \times 6.25 \%$ or 3.125% will remain
- after 6 half-lives, $1 / 2 \times 3.125 \%$ or 1.56% will remain
- after 7 half-lives, $1 / 2 \times 1.56 \%$ or 0.78% will remain
- after 8 half-lives, $1 / 2 \times 0.78 \%$ or 0.39% will remain
- after 9 half-lives, $1 / 2 \times 0.39 \%$ or 0.195% will remain
- after 10 half-lives, $1 / 2 \times 0.195 \%$ or 0.10% will remain

Because the reactant is essentially consumed by the end of the third half life, very little further reaction can occur.
12. Referring to the half-life calculations above, there is about 10% of the sample left after three half-lives. If the half-life for a reaction is 120 s , then three half-lives is 360 s . It will take slightly longer to consume an additional 2.5%, so it will take about 400 s until only 10% of the original reactant is left.

Page 288, Q 7
7. $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$

$$
=\frac{0.693}{0.0234 \mathrm{a}^{1-}}
$$

$=29.6 \mathrm{a}$ ("a" for annum or years)

