Review #4: Thermochemistry

1. Know the meanings of, and be able to apply, the following terms:

- enthalpythermochemical equationstandard enthalpy (heat) of formationendothermic reactioncalorimetrystandard stateexothermic reactionspecific heat capacityHess's Law
- 2. A hot piece of metal is placed in 30.0 mL of water in a coffee cup calorimeter. As the metal cools, the water warms from 20.0 °C to 24.0°C. How much heat does the water absorb? (0.502 kJ)
- 3. What are the standard states of the following elements (give both the chemical formula and state)?

sulfur: _____, carbon: _____, hydrogen: _____, iodine: _____, neon: _____, phosphorus: _____, lead: _____, mercury: _____, chlorine: _____, bromine; _____

- 4. Write formation equations for the following substances:
- a) NaNO₃ (s)
 b) (NH₄)₂CO₃ (s)
 c) Hg₂SO₃ (s)
 d) CH₂O (l)
- 5. Use standard enthalpies of formation ($\Delta H^{\circ} f$) to calculate the heat of reaction (ΔH) for the following:
- a) $C_2H_4(g)$ + 2 $O_2(g) \rightarrow$ 2 $CO_2(g)$ + 2 $H_2O(g)$
- b) $N_2H_4(I)$ + 2 $H_2O_2(I) \rightarrow N_2(g)$ + 4 $H_2O(g)$
- c) $NH_3(g)$ + $HCI(g) \rightarrow NH_4CI(s)$
- 6. Use Hess's Law to calculate the heat of reaction (ΔH) for the reaction: (-648 kJ)

 $N_2H_4(I)$ + 2 $H_2O_2(I) \rightarrow N_2(g)$ + 4 $H_2O(g)$

Given:

$N_{2}H_{4}(I)$ + 3 $O_{2}(g)$ $ ightarrow$ 2 $NO_{2}(g)$ + 2 $H_{2}O(g)$	∆H = - 466 kJ
$H_2O(I) + \frac{1}{2}O_2(g) \rightarrow H_2O_2(I)$	∆H = + 98 kJ
$rac{1}{2}$ N ₂ (g) + O ₂ (g) $ ightarrow$ NO ₂ (g)	∆H = + 34 kJ
$H_2O(I) \rightarrow H_2O(g)$	∆H = + 41 kJ

7. A 1.00 gram sample of the rocket fuel hydrazine, N_2H_4 , is burned in a calorimeter containing 1200.0 g of water. The temperature of the water rises from 24.62 to 28.16°C. The reaction is:

 $N_2H_4(I)$ + $3 O_2(g) \rightarrow 2 NO_2(g)$ + $2 H_2O(g)$

- a) Calculate the amount of heat (Q) absorbed by the water when 1.000 g of hydrazine burns. (17.8 kJ)
- b) Calculate the heat of reaction (ΔH) per mole of hydrazine burned. (-570. kJ/mol N₂H₄)
- 8. For the reaction: $Fe_2O_{3(s)} + 3 CO_{(g)} \rightarrow 2 Fe_{(s)} + 3 CO_{2(g)}$ $\Delta H^\circ = -25.0 \text{ kJ}$ Calculate the amount of energy required/released when 100.0 grams of pure iron are formed. (-22.4 kJ)
- 9. Given: $MnO_2(s) \rightarrow MnO(s) + \frac{1}{2}O_2(g)$ $\Delta H = +134.8 \text{ kJ}$ $MnO_2(s) + Mn(s) \rightarrow 2 MnO(s)$ $\Delta H = -250.1 \text{ kJ}$

Calculate the heat of formation of $MnO_2(s)$. (-519.7 kJl)

- 10. When one mole of CH_4 (g) burns in a bomb calorimeter containing 21.00 kg of water, the temperature of the water rises by 9.140 °C.
- a) Write the balanced reaction for the complete combustion of methane.
- b) Use heats of formation to calculate the ΔH for the combustion per mole of methane (-802.5 kJ/mol)
- c) Use the calorimetry data above to calculate the heat of combustion (ΔH) per mole of CH_4 (-803.1 kJ)
- 11. If a reaction is endothermic, which is higher, the enthalpy of the reactants or of the products?
- 12. In an experiment, 3.116 g of solid lithium hydroxide is mixed with 200.0 mL of 0.750 M solution of nitric acid in a coffee cup calorimeter. A neutralization (double displacement) reaction occurs and the temperature of the nitric acid goes from 24.5 °C to 31.4 °C.
- a) Write the balanced chemical reaction for the reaction that occurs. Include the states of all reactants and products.
- b) Calculate the molar enthalpy of reaction (ΔH) per mole of lithium hydroxide. (-44.4 kJ/mol LiOH)
- c) State three assumptions that should not significantly affect the accuracy of the results.
- 13. Consider the following equations:

(1)	$Fe_2O_{3(s)}$ + 3 $CO_{(g)} \rightarrow$ 2 $Fe_{(s)}$ + 3 $CO_{2(g)}$	∆H° = -25 kJ
(2)	3 Fe ₂ O _{3(s)} + $CO_{(g)} \rightarrow$ 2 Fe ₃ O _{4(s)} + $CO_{2(g)}$	∆H° = -47 kJ
(3)	$Fe_3O_{4(s)}$ + $\mathcal{CO}_{(g)}$ $ ightarrow$ 3 $FeO_{(s)}$ + $\mathcal{CO}_{2(g)}$	∆H° = +38 kJ

Calculate ΔH for the reaction: FeO_(s) + CO_(g) \rightarrow Fe_(s) + CO_{2(g)} (- 17 kJ)