Answers to Review #2: Bonding, Structure and Properties of Substances (Chapter 4)

1. Know the meanings of, and be able to apply, the following terms:

allotropes	expanded valence
coordinate covalent bond	hydrogen bonding
crystal lattice	inter-molecular attraction
dipole-dipole forces	intra-molecular attraction

London dispersion forces polar covalent bond metallic bonding polar molecule network solid resonance structures octet rule VSEPR Theory

2. Compare the four types of bonding that were discussed in this course by completing the chart:

Type of	Types of		Ionization	Describe How the Electrons	Describe the
Bond	Atoms	ΔΕΝ	Energies Of	are	Polarity of the Bond
	involved		Bonding Atoms	Arranged in the Bond	
pure covalent	two non-metal atoms	<0.50	both atoms have high IE	the bonding electrons are shared approximately equally between bonded atoms	bond is essentially non-polar
polar covalent	two non-metal atoms	0.50 - 1.70	both atoms have high IE	the bonding electrons are significantly shifted toward the atom with higher EN	bond is significantly polar, creating δ+ and δ- charges
ionic	a non-metal and a metal atom	>1.70	one atom has high IE, one has low IE	the bonding electrons are essentially transferred to the atom with higher EN	bond is strongly polar with full + and - charges
metallic	metal atom only	<0.50ish (small)	both atoms have low IE	the valence electrons are delocalized; they are found in a random "electron sea" around the positive metal ions	bond is essentially non-polar

3. Describe how you could distinguish between the following substances using their properties:

a) a metal and an ionic substance

- can be distinguished because metallic substances conduct electricity in their pure, usually solid, form while ionic substances conduct electricity only in their aqueous or molten form, not as solids
- b) a pure covalent compound and a polar covalent compound
 - can be distinguished because a pure covalent compound is non-polar so it will not dissolve in a polar solvent such as water
 - polar covalent compounds are polar so they dissolve well in polar solvents such as water
- c) a pure covalent compound and a network solid
 - can be distinguished based on melting point. Pure covalent compounds have relatively low melting points while network solids have very high melting points
 - these substances can not be distinguished based on solubility in water because neither will dissolve in polar solvents such as water (however, pure covalent substances will dissolve in non-polar solvents such as benzene, while network solids are insoluble)
- d) polar covalent compound and an ionic compound
 - both of these types of compounds are generally soluble in water
 - they can be distinguished by their ability to conduct an electric current in aqueous solution
 - all ionic compounds are electrolytes because they dissociate in water to produce ions that can conduct
 - most polar covalent compounds are not electrolytes so they do not produce ions when they are dissolved in water (the exception is acids, which are polar covalent but also electrolytes)

- 4. Explain the following:
- a) How a compound may contain polar bonds, but not be a polar molecule.
 - the polarity of a molecule depends on BOTH the polarity of the bonds in the molecule and the symmetry of the molecule
 - if a compound contains polar bonds ($\Delta EN > 0.50$), but the molecule is symmetrical in all planes, then the bond polarity will cancel out and the molecule will be non-polar overall
- b) How the physical properties of a substance are related to the nature of the inter-molecular attractions.
 - as the polarity of the molecules (particles) of a substance increases, there are more significantly charged regions on the molecule and these will cause inter-molecular attraction between molecules
 - as the strength of inter-molecular attraction increases, the particles are held more tightly together, so they have higher melting and boiling points, are harder solids and have weaker odours, for example:
 - i) non-polar molecules are essentially uncharged overall, so there are only London dispersion forces (LDFs) between molecules. Because LDFs are very weak, these substances are often gases or liquids at room temperature, they have very low melting and boiling points and often have odours
 - polar molecules have partially charged regions, so there are both LDFs and dipole-dipole attractions between molecules. Molecules are significantly attraction to each other, so these substances are often liquids or soft solids at room temperature, they have medium melting and boiling points and often have odours (as polarity increases, melting and boiling points increase)
 - ionic substances have fully charged regions so there are strong ionic (electrostatic) attractions between molecules. Ions are strongly attracted to one another, so these substance are solids at room temperature, have very high melting and boiling points and usually do not have odours
- c) Why metals are good conductors of electricity.
 - metals are held together by metallic bonding. Metal atoms pool their valence electrons into a delocalized "electron sea" which surrounds the metal cations. Valence electrons can move easily between metal cations
 - metals are good conductors of electricity because of the delocalized "electron sea". When a current of electricity (a stream of electrons) is applied to a metal, the electrons can move easily from one metal cation to another and be conducted through the metal
- d) Why network solids have such high melting points.
 - network solids such as diamond, graphite and silicon dioxide (sand) are held together by covalent bonds in two or three dimensions
 - because of the number and strength of covalent bonds, it takes a great deal of energy to separate the atoms from one another, so network solids have very high melting points

Compound				AA . L L.	T	
Compound	Draw the	General	Name of	Molecule	Type(s) of	Properties (state at
	Lewis	Formula	the Shape	Polar or	Inter-Molecular	SAIP, melting point,
	Structure	(AX _n E _m)	of Molecule	Non-Polar?	Attraction	solubility, electrolyte?)
NF ₃ have 26 e- need 32 e- 6e- in bonds = 3 bonds 20e- in LP	F F F	F:	Trigonal pyramidal	Polar (it is asymmetrical)	 LDFs dipole-dipole 	 probably liquid at SATP medium melting point soluble in water non-electrolyte
NH4 ⁺ have 8 e- need 16 e- 8e- in bonds = 4 bonds no e- in LP	H - N - I H - N - I H ‡ has coordin covalent bond	+ - H AX ₄ E ₀ hate ding	Tetrahedral	The NH₄+ ion is non-polar (it is symmetrical)	 LDFs hydrogen bonding ionic attraction 	 solid at SATP high melting point soluble in water electrolyte
CO ₂ have 16 e- need 24 e- 8e- in bonds = 4 bonds 8 e- in LP	$\dot{\mathbf{v}} = \mathbf{c}$	$C = O$ AX_2E_0	Linear	Non-polar (it is symmetrical)	• LDFs only	 gas at SATP low melting point only slightly soluble in water non-electrolyte
CH2O have 12 e- need 20 e- 8e- in bonds = 4 bonds 8 e- in LP	:o: II H	AX3E0	Trigonal planar	Polar (it is asymmetrical)	 LDFs dipole-dipole 	 probably liquid at SATP medium melting point soluble in water non-electrolyte
NO2 ⁻¹ have 18 e- need 24 e- 6e- in bonds = 3 bonds 12 e- in LP	• • • • • • • • • • • • • • • • • • •	1- - O: AX ₂ E ₁ nance hate ding	Bent (angular or V-shaped)	Polar (it is asymmetrical)	 LDFs dipole-dipole ionic attraction 	 probably solid at SATP high melting point soluble in water electrolyte
PO3 ³⁻ have 26 e- need 32 e- 6e- in bonds = 3 bonds 20 e- in LP	P O + has coordin covalent bone	3- 0- 0- AX ₃ E ₁ nate	Trigonal pyramidal	Polar (it is asymmetrical)	 LDFs dipole-dipole ionic attraction 	 probably solid at SATP high melting point soluble in water electrolyte

5. Use "the System" to draw the following molecules that obey the octet rule:

SO3 ²⁻ have 26 e- need 32 e- 6e- in bonds = 3 bonds 20 e- in LP	S O O AX ₃ E ₁ ‡ has coordinate covalent bonding	Trigonal pyramidal	Polar (it is asymmetrical)	 LDFs dipole-dipole ionic attraction 	 probably solid at SATP high melting point soluble in water electrolyte
SO3 have 24 e- need 32 e- 8e- in bonds = 4 bonds 16 e- in LP	O = S - O: · O: · O: · AX ₃ E ₀ * forms resonance structures ‡ has coordinate covalent bonding	Trigonal planar	Non-polar (it is symmetrical because of resonance)	• LDFs	 gas at SATP low melting point insoluble in water non-electrolyte
BrO ₂ ⁻ have 20 e- need 24 e- 4e- in bonds = 2 bonds 16 e- in LP	$\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ AX_2E_2 \end{bmatrix}^{1-}$	Bent (angular or V-shaped)	Polar (it is asymmetrical)	 LDFs dipole-dipole ion to ion 	 solid at SATP high melting point soluble in water electrolyte

6. Referring to the molecules in question 5:

a) Put a * beside the structures which are resonance structures.

b) Put a ‡ beside the structures that show coordinate covalent bonding.

7.	Draw the	following	molecules	that	do NOT	obey	y the	octet	rule:

Compound	Draw the Lewis	General Formula	Name of the Shape	Molecule Polar or	Type(s) of Inter-	Properties (state at SATP, melting point,
	Structure	(AX _n E _m)	of Molecule	Non-Polar?	Molecular Attraction	solubility, electrolyte?)
XeCl ₂ have 22 e- 2 bonds so 4 e- in bonds 18 e- in LP	:CI: :Xe :CI:	AX ₂ E ₃	linear	Non-polar (it is symmetrical)	• LDFs	 probably gas at SATP low melting point insoluble in water non-electrolyte
BeCl ₂ have 16 e- 2 bonds so 4 e- in bonds 12 e- in LP	:Cl – Be		linear	Non-polar (it is symmetrical)	• LDFs	 probably gas at SATP low melting point insoluble in water non-electrolyte
SiF5 ⁻ have 40 e- 5 bonds so 10 e- in bonds 30 e- in LP	:F: :F-Si :F-Si	$F:$ $F:$ AX_5E_0	Trigonal Bipyramidal	The SiF5 ⁻ ion is non-polar (it is symmetrical)	 LDFs ionic attraction 	 solid at SATP high melting point soluble in water electrolyte
FCl ₃ have 28 e- 3 bonds so 6 e- in bonds 22 e- in LP	:CI :CI :CI F :CI :CI	• • • •	T-shaped	FCl3 is polar (it is asymmetrical)	 LDFs dipole-dipole 	 probably liquid at SATP medium melting point soluble in water non-electrolyte
BI ₃ have 24 e- 3 bonds so 6 e- in bonds 18 e- in LP	: I : I : I - B	: - <u>I</u> : AX ₃ E ₀	Trigonal planar	Non-polar (it is symmetrical)	• LDFs	 probably gas at SATP low melting point insoluble in water non-electrolyte
CIF₄ ⁺ have 34 e- 4 bonds so 8 e- in bonds 26 e- in LP	F - Cl F - Cl	$-\mathbf{F}$	See-saw	ClF4 ⁺ is polar (it is asymmetrical)	 LDFs dipole-dipole ion to ion 	 probably solid at SATP high melting point soluble in water electrolyte

Compound	Draw the Lewis Structure	General Formula (AX _n E _m)	Name of the Shape of Molecule	Molecule Polar or Non-Polar?	Type(s) of Inter- Molecular Attraction	Properties (state at SATP, melting point, solubility, electrolyte?)
OCl ₆ have 48 e- 6 bonds so 12 e- in bonds 36 e- in LP			octahedral	Non-polar (it is symmetrical)	• LDFs	 probably gas at SATP low melting point insoluble in water non-electrolyte
ICl₄ ⁻ have 36 e- 4 bonds so 8 e- in bonds 28 e- in LP			square planar	Non-polar (it is symmetrical)	 LDFs ion to ion 	 solid at SATP high melting point soluble in water electrolyte
FIO3 have 32 e- 7 bonds so 14 e- in bonds 18 e- in LP	:0: :I-F: :0:	$= \overset{.}{\overset{.}{\overset{.}{\overset{.}{\overset{.}{\overset{.}{\overset{.}{\overset{.}$	Tetrahedral	Polar (it is asymmetrical)	 LDFs dipole-dipole 	 probably liquid at SATP medium melting point soluble in water non-electrolyte