Gas Laws Practice Tes

1.00 atm	15.0 PSI	760 mmHg	760 Torr
R = 0.0821	R = 1.23	R = 62.36	R = 62.36

1. On the heating curve for naphthalene:

a) write the letter "a" in all regions where potential energy (E_p) is essentially constant

- b) write the letter "b" in all regions where kinetic energy (E_k) is constant
- c) write the letter "c" in all regions where kinetic energy is increasing
- d) write the letter "d" where naphthalene is boiling
- e) write the letter "e" where E_k is the lowest
- f) write the letter "f" where E_P is the highest
- 2. From the heating curve for naphthalene:
- a) the freezing point of naphthalene is about <u>362K</u>
- b) the melting point of naphthalene is about <u>362K</u>
- c) the state of naphthalene at 445 K is <u>liquid</u>
- d) the state of naphthalene at 277 °C (550 K) is gas
- e) at 800 K, naphthalene is a vapour
- f) from 13 to 27 minutes, the kinetic energy is increasing
- g) from 27 to 43 minutes, the potential energy of the particles is essentially constant
- h) from 43 to 55 minutes, the particles have only translational motion
- i) from 27 to 43 minutes, the particles are moving significantly further apart
- j) from 0 to 13 minutes, the particles are gaining significant potential energy
- k) from 43 to 55 minutes, the particles are sublimating
- 1) this sample of naphthalene is very pure
- m) at 400K the particles have both vibrational and rotational motion
- 3. Write the proportionality statement <u>and</u> mathematical equation for the relationship shown in the graph to the right:

proportionality statement: $\mathbf{m} \alpha \mathbf{n}$

equation: $\underline{\mathbf{m}_1} = \underline{\mathbf{m}_2}$ $\mathbf{n}_1 \quad \mathbf{n}_2$

- 4. What are the temperature and pressure values for:
- a) STP: <u>0° (273 K)</u> and <u>101.3 kPa</u> (or 15.0 PSI or 760 mmHg or 1.00 atm)
- b) SATP: <u>25°C (298 K)</u> and <u>100.0 kPa</u>

T	or	F
Т	or (F
T	or	F
Т	or (F
T	or	F
(T)	or	F

Heating Curve for Naphthalene

- 5. A 2.0 L sample of helium gas is heated at constant pressure, from 50°C to 100°C. The new volume of the gas at 100°C is:
 - a) 1.7 L b) 2.0 L (c) 2.3 L d) 4.0 L

don't forget to convert to Kelvins!

- 6. Compare the kinetic and potential energies of pure neon at 150 K and pure zinc at 700K.
- pure neon has lower kinetic energy because it has a lower temperature than zinc
- pure neon has higher potential energy because it is in the gas state while zinc is a liquid at 700 K (the melting point of zinc is 692.68K, from the Periodic Table)
- 7. The change of state when a solid becomes a gas is called: sublimation
- 8. The change of state when a gas becomes a liquid is called: condensation
- 9. True or False? "Gases expand to fill their container" is one of the statements of the KMT for gases.
- **False**, this is not one of the five statements of the KMT for gases (sneaky, huh? :)
- 10. A car tire purchased in the USA requires 32.5 PSI pressure. What is the equivalent pressure in kPa?

 $32.5 \text{ PSI x } \frac{101.3 \text{ kPa}}{15.0 \text{ PSI}} = 219 \text{ kPa} (3 \text{ sd})$

- 11. State Gay-Lussac's Law in words (be complete).
- the pressure of a gas varies directly with temperature (in Kelvins) when the number of moles and volume are held constant
- 12. 1.00 L of a Noble gas has a mass of 2.71 g at 3.00 atm and 0 °C. What is the identity of the gas?
- you are only given one value for each volume, pressure and temperature, so this is a PV = nRT question

Givens:	P V = n R T	MM = <u>m</u>
P = 3.00 atm	$n = \frac{P V}{P T}$	n
V = 1.00 L		= <u>2.71 g</u>
n = ?	$= \frac{3.00 \text{ atm x } 1.00 \text{ L}}{0.0821 \text{ m } 272 \text{ K}}$	0.13385 mol
R = 0.0821 (for pressure in atm)	0.0821 X 2/3 K	= 20.2 g/mol (3 sd)
$T = 0 \circ C + 273 = 273 K$	= 0.13385 mol	
		the gas is likely neon

- 13. What pressure (in mmHg) is exerted by 1.86 x 10^{21} molecules of NH₃ (g) in a 0.500 L container at 63°C?
- you are only given one value for each volume, pressure and temperature, so this is a PV = nRT question

Givens:		
P = ? (in mmHg)		
V = 0.500 L		
n =#molecules		
6.02×10^{23} molecules/mol		
$= 1.86 \times 10^{21} \text{ molecules}$		
6.02×10^{23} molecules/mol		
= 0.0030897 mol		
R = 62.36 (for pressure in mmHg)		
T = 63 °C + 273 = 336 K		

P V = n R T	
$P = \frac{n R T}{V}$	
$= \frac{0.0030897 \text{ mol x } 62.36 \text{ x } 336 \text{ K}}{0.500 \text{ L}}$	
= 129 mmHg pressure exerted	

- 14. Mrs. Patterson has a sealed balloon full of air at 23.5°C and 99.5 kPa. The balloon has a volume of 3.12 L. She puts the balloon into liquid nitrogen at –196°C and 118 kPa. What is the volume of the air in the balloon when it is in the liquid nitrogen?
- you are given two values for temperature and pressure, so this is a $\underline{P_1V_1}_{n_1T_1} = \underline{P_2V_2}_{n_2T_2}$ problem

Givens:	
$V_1 = 3.12 L$	$V_2 = ?$
$P_1 = 99.5 \text{ kPa}$	$P_2 = 118 \text{ kPa}$
n_1 = assume constant	n_2 = assume constant
$T_1 = 23.5 \text{ °C} + 273$ = 296.5 K	$T_2 = -196^{\circ}C + 273$ = 77 K

$\underline{\mathbf{P}}_{\underline{1}}\underline{\mathbf{V}}_{\underline{1}} = \underline{\mathbf{P}}_{\underline{2}}\underline{\mathbf{V}}_{\underline{2}}$	or	$\mathbf{P}_1\mathbf{V}_1\mathbf{T}_2 = \mathbf{P}_2\mathbf{V}_2\mathbf{T}_1$	(n can be ignored)
n_1T_1 n_2T_2		$\mathbf{V}_2 = \underline{\mathbf{P}_1 \mathbf{V}_1 \mathbf{T}_2} \\ \overline{\mathbf{P}_2 \mathbf{T}_1}$	
$= \frac{99.5 \text{ kPa x } 3.12 \text{ L x } 77 \text{ K}}{118 \text{ kPa x } 296.5 \text{ K}}$			
		= 0.683 L or	0.68 L (you can report either 2 or 3 sd)