Review #5: Chemical Equations and Stoichiometry

1. Define limiting factor. Why is it significant?

2.	Balance a)	these expressions and classify the type of reaction. Al + $O_2 \rightarrow Al_2O_3$	Type of Reaction
	b)	$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$	
	c)	$MgO + H_3PO_4 \rightarrow Mg_3(PO_4)_2 + H_2O$	
	d)	$PbO_2 \rightarrow PbO + O_2$	
	e)	$SiO_2 + HF \rightarrow SiF_4 + H_2O$	
	f)	$C_{10}H_{22} + O_2 \rightarrow CO_2 + H_2O$	
	g)	$Mg + H_2SO_4 \rightarrow H_2 + MgSO_4$	
	h)	$Sb_2S_3 + HCl \rightarrow H_3SbCl_6 + H_2S$	Can't classify

- 3. For the reaction: $2 \operatorname{Fe_2O_3}(s) + 3 \operatorname{C}(s) \rightarrow 4 \operatorname{Fe}(s) + 3 \operatorname{CO_2}(g)$ What mass of iron will be produced when 50.0 g of iron(III) oxide react with an excess of carbon?
- 4. For the reaction: $2 \text{ KClO}_3(s) \rightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$
 - a) What volume of oxygen gas, measured at STP, is formed by the reaction of 75.0 g of potassium chlorate?
 - b) How many moles of potassium chlorate must react in order to form 2.5 g of potassium chloride?
- 5. For the reaction: $6 \text{ CO}_2(g) + 6 \text{ H}_2 O(l) \rightarrow C_6 \text{H}_{12} O_6(s) + 6 O_2(g)$
 - a) Which substance is in excess when 100.0 g of carbon dioxide and 50.0 g of water are reacted?
 - b) How much glucose will be produced by the reaction in part (a)?
- 6. Octane burns according to the reaction:

 $2 C_8 H_{18} (l) + 25 O_2 (g) \rightarrow 16 CO_2 (g) + 18 H_2 O (v)$

- a) What mass of carbon dioxide will be produced when 180.0 g of octane are completely burned?
- b) What volume of carbon dioxide, at STP, will be produced when 62.7 g of oxygen are completely reacted?
- 7. Predict the products of the following reactions. Balance the equations. Indicate the states of all products by referring to the solubility rules to predict if a precipitate will form.
- a) NaOH (aq) + $Cd(NO_3)_2$ (aq) -
- b) AgClO₃ (aq) + MgCl₂ (aq) \rightarrow
- c) $K_2S(aq) + Fe(CH_3COO)_3(aq) \rightarrow$

- 8. Referring to the activity series to the right, which of the following reactions will proceed (take place)? If a reaction will occur, write the products (including their states) and balance the equation. If a reaction will not proceed, write "NR" (no reaction):
- a) Na (s) + KNO₃ (aq) \rightarrow
- b) Li (s) + MgCl₂ (aq) \rightarrow
- c) Al (s) + Cu(NO₃)₂ (aq) \rightarrow
- d) Pb (s) + Na₂SO₄ (aq) \rightarrow
- e) Ba (s) + H₂SO₄ (aq) \rightarrow

Activity Series for Metals: Lithium

Lithium Potassium Barium Calcium Sodium Magnesium Aluminum Zinc Iron Nickel Tin Lead Hydrogen Copper Silver Gold