Unit 8, Lesson 04: Balancing Redox Reactions in Basic Conditions

These youtube videos by Tyler DeWitt are excellent. Before reading the notes, please watch:

1. How to Balance Redox Equations in Basic Solution
2. How to Balance Redox Equations in Basic Solution Example Problem

The main trick is to remember to add OH^{1-} ions TO BOTH SIDES of the chemical equation that was balanced in acidic conditions.

Let's take the reactions that we balanced in acid conditions from the last lesson and balance them in basic conditions:

Example \#1, balanced in acidic conditions:
$5 \mathrm{HSO}_{3}{ }^{1-}+2 \mathrm{IO}_{3}{ }^{1-} \rightarrow \quad 5 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}+3 \mathrm{H}^{1+}+\mathrm{H}_{2} \mathrm{O}$

Step 1: Recopy the reaction and add $3 \mathrm{OH}^{1-}$ ions TO BOTH SIDES to neutralize the $3 \mathrm{H}^{1+}$
$3 \mathrm{OH}^{1-}+5 \mathrm{HSO}_{3}{ }^{1-}+2 \mathrm{IO}_{3}{ }^{1-} \rightarrow 5 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}+3 \mathrm{H}^{1+}+\mathrm{H}_{2} \mathrm{O}+3 \mathrm{OH}^{1-}$

Step 2: the $3 \mathrm{H}^{1+}$ and $3 \mathrm{OH}^{1-}$ on the product side will combine to make $3 \mathrm{H}_{2} \mathrm{O}$. These 3 water molecules add to the water molecule that is already there to make a total of $4 \mathrm{H}_{2} \mathrm{O}$. The reaction is now balanced in basic conditions. Re-write the simplified equation and draw a box around it:
$3 \mathrm{OH}^{1-}+5 \mathrm{HSO}_{3}{ }^{1-}+2 \mathrm{IO}_{3}{ }^{1-} \rightarrow 35 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Step 3: Double-check!!!

$8(\mathrm{H})$	$8(\mathrm{H})$
$5(\mathrm{~S})$	$5(\mathrm{~S})$
$24(\mathrm{O})$	$24(\mathrm{O})$
$2(\mathrm{I})$	$2(\mathrm{I})$
charge: -10	charge: -10

Example \#2, balanced in acidic conditions (this is the slow oxidation of ethanal to ethanoic acid):

$$
8 \mathrm{H}^{1+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \rightarrow 3 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+2 \mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O}
$$

Step 1: Recopy the reaction and add $8 \mathrm{OH}^{1-}$ ions TO BOTH SIDES to neutralize the $3 \mathrm{H}^{1+}$
$8 \mathrm{OH}^{1-}+8 \mathrm{H}^{1+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \rightarrow 3 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+2 \mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{OH}^{1-}$

Step 2: the $8 \mathrm{H}^{1+}$ and $8 \mathrm{OH}^{1-}$ on the reactant side will combine to make $8 \mathrm{H}_{2} \mathrm{O}$. These 8 water molecules will cancel out the $4 \mathrm{H}_{2} \mathrm{O}$ molecules on the product side, leaving $4 \mathrm{H}_{2} \mathrm{O}$ on the reactant side. The reaction is balanced in basic conditions. Re-write the simplified equation, drawing a box around it:

$$
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \rightarrow 3 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+2 \mathrm{Cr}^{3+}+8 \mathrm{OH}^{1-}
$$

Step 3: Double-check!!! Both sides have $20(\mathrm{H}), 14(\mathrm{O}), 2(\mathrm{Cr}), 6(\mathrm{C})$ and a total charge of -2

