SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

Lesson	Topics Covered	Homework Questions and Assignments
1	 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and Alchemists Dalton: his atomic theory, Law of Conservation of Mass, Law of Constant Composition 	 Read Handout: In Search of a Model for Matter Read pages 23 to 25 in your text Answer questions 1 to 5 on Handout: Practice Questions: The Development of the Modern Atomic Theory
2	 History of Atomic Theory (cont.) Note: Discovery of the Sub-atomic Particles Wm Crookes: atoms are divisible J.J. Thomson: "Raisin Bun" model Ernest Rutherford: "Electron Cloud" model Niels Bohr: "Planetary" model James Chadwick: the neutron 	 Review and UNDERSTAND the development of the atomic models Answer questions 6 to 9 on Practice Questions: The Development of the Modern Atomic Theory
3	 Note: Summary of the Sub-atomic Particles protons and atomic number (Z) neutrons, isotopes, mass number (A) electrons, calculating charge on ions 	 Review and UNDERSTAND the definitions of atomic number, mass number and isotope Complete Handout: Composition of Atoms and the Sub-atomic Particles
4	 Note: Isotopes and Average Atomic Mass average atomic mass calculating average atomic mass 	 Give 3 differences between mass number and average atomic mass Complete Handout: Isotopes and Average Atomic Mass
5	 Note: Nuclear Chemistry radioisotopes types and properties of nuclear radiation: alpha, beta and gamma 	 Answer questions 9 and 10 on page 32 of text Read pages 34 and 35 in text. Answer Q 20, 21 and 22 on page 35
6	Note: Nuclear Chemistry (cont.)Half-lives of Radioisotopes	 Questions 12 and 13 on page 32 of text Begin Review Questions for Atomic Theory Quiz #1
7	Note: Summary of Atomic Structure, so far Begin Bohr?	Complete review on Handout: Review Questions for Atomic Theory Quiz #1
8	 Note: Bohr's Model of the Atom types of energy (kinetic and potential) the hydrogen bright line spectrum (demo) Explaining Neils Bohr's Model of the Atom 	 Read pages 37 – 40 in your text and answer questions at the bottom of the handout: The Hydrogen Bright Line Spectrum Work on Review Questions for Atomic Theory Quiz #1 STUDY!!![©] When you have completed the quiz begin to provide the second secon
2	(whole period)	read articles and answer questions about radio- isotopes

Practice Questions: The Development of the Modern Atomic Theory

Read pages 23 to 25 in Nelson Chemistry 11, the handout "In Search for a Model for Matter: 2400 Years of Atomic Theory" and your class notes, and answer the following questions:

- 1. For thousands of years, people have wondered what matter is made out of. The ancient Greeks proposed two different theories about the composition of matter.
- a) Which ancient Greek philosopher first proposed that the smallest piece of matter should be called the "atom"?
- b) Where did the idea for the atom come from (what was his reasoning or logic)?
- c) What does the word "atom" mean?
- 2. The second theory of matter held by the ancient Greeks was the Four-Element Theory.
- a) Which ancient Greek philosopher **proposed** the Four-Element Theory of Matter?
- b) What are the four elements of the Four-Element Theory?
- c) Where did the idea for the Four-Element Theory come from?
- 3. Just like today, scientific ideas can be very political.
- a) Which influential ancient Greek **<u>supported</u>** the Four-Element Theory?
- b) For how many years was the Four-Element Theory accepted?
- 4. The Alchemists in Europe and the Middle East performed many experiments and kept excellent records of their work.
- a) What were the Alchemists trying to do?
- b) What significant contribution did the Alchemists make to modern science?
- 5. John Dalton (1803? 1808?) revived the Atomic Theory.
- a) Summarize the major statements of Dalton's Atomic Theory.
- b) State the Law of Conservation of Mass.
- c) How does Dalton's Atomic Theory explain the Law of Conservation of Mass?
- 6. According to Dalton's Atomic Theory, atoms were indivisible; they could not be broken down into smaller pieces. In 1904, J.J. Thomson proposed that he had found a sub-atomic particle.
- a) What was the name of the piece of equipment used by Thomson?
- b) What did Thomson call the particle that he had discovered, and what was the charge on this particle?
- c) Overall, matter is neutral (does not have a charge). What other sub-atomic particle did Thomson suggest must also be present in an atom?
- d) What model of the atom did Thomson propose? How are the sub-atomic particles arranged?
- 7. J.J. Thomson was on the right track, but in 1911, Rutherford showed that Thomson's model of the atom was wrong and he developed a new model.
- a) Describe the experiment performed by Rutherford.
- b) What is an alpha particle? What charge does an alpha particle have?
- c) How does Rutherford's model of the atom differ from that of Thomson? Describe the location of the electrons in Rutherford's model.
- 8. In 1913, Neils Bohr made a small but significant change to Rutherford's model. What is the difference in the electron arrangement between Bohr's and Rutherford's model?
- 9. James Chadwick added the finishing touch to the Atomic Theory. What sub-atomic particle did Chadwick discover? What is the charge on this particle and where is it located in the atom?
- ** The Rutherford-Bohr model of the atom is still not entirely correct. Currently, the "Quantum-Mechanical Theory" is accepted, but more about this theory later.

Discovery of the Sub-Atomic Particles

Dalton's theory of the atom as an ______held for almost one hundred years. However, during the late 1800's, scientists were rapidly developing new ______, and this equipment led to discoveries about matter that could not be explained using Dalton's atomic theory.

For example, a physicist named ______ developed a glass tube that had ______ in it, one at each end. The tube was connected to a vacuum pump and almost all of the air was pumped out, then the glass tube was sealed. When the metal electrodes were connected to a ______, one of the metal electrodes gave off a ______, one of the metal electrode. The interesting thing was that _______. This meant that the particles were _______, ne grade the particles came from the negative electrode, or _______, they were called ______, and the glass tube was called a _______.

From this, scientists realized that the	(uncharged) metal electrode was giving
off	This meant that the metal must be made,
not from uncharged atoms, but from	•

Another researcher, ______ carried on the work with cathode ray tubes. He reasoned that since the metal electrode was originally neutral (uncharged) and the particles it gave off were ______ charged, then the electrode must also contain ______. Thomson also noted that it made no difference what type of metal he made the electrodes out of, the ______ mere always the same. He called these particles ______ and concluded that they were a ______.

From his work, J.J. Thomson developed a model of the atom in which atoms are made up of _______. He visualized the atom as a _______ in which the protons are spread out over the surface of a spherical atom and the electrons are imbedded in with the protons so that the _______ of the atom is _______.

Researchers continued to explore the atom and ______ were discovered, as J.J. Thomson had predicted. These positive particles were shown to be the same as a ______. They were found to have a mass _______ than the mass of an electron.

Then, in 1911, one of Thomson's colleagues, ______, conducted an experiment that seemed to contradict the raisin bun model. Rutherford set up a very thin piece of ______ inside a fluorescent screen. He then shot ______ (helium nuclei) at the gold foil, expecting the ______

Most of the time, the alpha particles did pass straight through the foil. However, a small number of the alpha particles were _______, and some bounced straight back.. Rutherford interpreted this to mean that there are _______ that are positively charged, which he called the ______. He concluded that the rest of the foil must be mostly _______, which allowed the alpha particles to pass through. Rutherford proposed that the electrons are found in the _______.

The atomic model was refined in 1913 by	, who showed that electrons
move in	around the

A further revision to this atomic model was made in 1932 by _____. He discovered ______in the nucleus, which he called the _____. Most (______) atoms contain neutrons in their nuclei.

As an analogy to give you an idea of the relative sizes and positions of the subatomic particles: If the nucleus was the size of a dot "·", the closest electron would be ______ away with just empty space in between. An atom is mostly ______.

Summary of the Sub-atomic Particles (Reference: Nelson Chemistry 11, page 26-27)

Atoms are <u>not</u> indivisible; that is, atoms	broken down in	to smaller particles.	0
Atoms are made up of three types of sub-atomic p	articles:		&
 1. Protons: a) are found in the of the atom b) have a charge of c) have a mass of (_)	
The <u>atomic number</u> (symbol "") is the defin The atomic number determines the eg. atomic number 11: means that the atom has atomic number 13: means that the atom has protor	ed as the number of of that atom. protons, the protons, the a as and the element	of in the nu atom (element) is atom (element) is is	cleus of an atom.
 2. Neutrons: a) are found in the of the atom b) have charge (they are c) have a mass of 	_)		
The <u>mass number</u> (symbol "") of an atom is of in the nucleus of an atom. • the mass number is a value • the mass number is the actual mass o • the mass number is always a • the mass number is reported on the P	s defined as the nu , it tells us how ma f an atom and i eriodic Table	mber ofany protons and neutr	_ plus the number
The atomic number and mass number for an atom	are written in this	standard format:	
$14 \longleftarrow \text{mass } \# = \# \text{ of protons } + \# \text{ of n}$ $N \longleftarrow \text{chemical symbol}$ $7 \longleftarrow \text{atomic } \# = \# \text{ of protons}$	eutrons		
75mass number:Asatomic number:Asnumber of protons:33number of neutrons:	202 Hg 80	mass number: atomic number: number of protons: number of neutrons:	
If you know the mass number of an atom and its a the number of neutrons in that atom using the rela	tomic number (fro tionship:	m its chemical symbo	ol), you can find
Mass number =	+		
or Number of neutrons =			
The number of protons defines the identity of an a number. However, an element can have atoms wi called	tom. All atoms of the different number	an element have the ers of	atomic atomic
Isotopes are defined as atoms of the same element	t that have differer	nt numbers of neutron	s. That is, isotopes

are atoms that have the same ______, but different ______.

Isotopes (continued)

- Isotopes have the same chemical and physical properties as other atoms of that element, the only difference is that some atoms are ______ than others
- there is ______ between the number of protons and the number of neutrons in an atom
- The number of neutrons does ______ equal the number of protons

Isotopes are often written using the format: Cl-35, where 35 is the ______ of the isotope

eg. Complete the following chart for the common isotopes of hydrogen

H-1	H-2	Н-3
• atomic number:	• atomic number:	atomic number:
• # of protons:	• # of protons:	• # of protons:
mass number:	mass number:	mass number:
• # of neutrons:	• # of neutrons:	• # of neutrons:
• symbol of isotope:	• symbol of isotope:	• symbol of isotope:
(in standard format)	(in standard format)	(in standard format)
• known as:	• also known as:	• also known as:

eg. Complete the following chart for the common isotopes of oxygen

		0.10
O-16	0-17	O-18
atomic number:	atomic number:	atomic number:
# of protons:	# of protons:	# of protons:
mass number:	mass number:	mass number:
# of neutrons:	# of neutrons:	# of neutrons:
symbol of isotope:	symbol of isotope:	symbol of isotope:
(in standard format)	(in standard format)	(in standard format)

3. Electrons:

- a) are found in the ______ around the nucleus, arranged in ______
- b) have a charge of ______
 c) have a ______ mass (1 / 1837 of an a.m.u.)

If the number of protons equals the number of electrons, the atom is _____ (uncharged)

14	# of protons:
N^{0}	# of neutrons:
7	# of electrons:

If the number of protons does not equal the number of electrons, it is called an "	".
An ion is defined as a	

¹⁵ N ³⁻ 7	# of protons: # of neutrons: # of electrons:	⁵⁵ Mn ⁴⁺ 25	# of protons: # of neutrons: # of electrons:
75 As ⁵⁺ 33	# of protons: # of neutrons: # of electrons:	⁷⁹ Se ²⁻ ³⁴	# of protons: # of neutrons: # of electrons:

Composition of Atoms: The Sub-atomic Particles

- 1. Write complete definitions for each of the following terms. Include one additional piece of information such as an example or application:
- a) Atomic number:
- b) Mass number:
- c) Isotope:
- d) Ion:
- Element Atomic # # of # of **Overall** # of Mass Number **Protons Electrons** Charge Neutrons He 0 4 13 +314 Ca 18 40 Ni – 58 26 38 +290 0 23 28 Ag – 107 +153 54 127 +370 103 118 0 Au 79 76 197 92 92 143 92 0 238 H – 1 +125 28 59 18 -3 16 Zn - 65 +2Si - 28 18
- 2. Complete the following chart:

3. Do ALL atoms (or ions) contain protons? _____ Electrons? _____ Neutrons? _____

4. Using the standard format (eg. "Ag-107"), identify any isotopes from the above table.

Isotopes and Average Atomic Mass

Isotopes are defined as atoms of the same element, with the same atomic number, but with a different mass number. That is, the number of protons in the atoms is the same, but isotopes have different numbers of neutrons, and this changes the mass of the atom.

Most elements have two or more naturally occurring isotopes. Tin has 11 isotopes, magnesium has three but aluminum and fluorine have only one. A sample of an element contains a mixture of the different isotopes of that element, with some of the isotopes being more common than others. For example, 99.985% of all hydrogen is the H-1 isotope, 0.015% is H-2 (deuterium) and only a trace amount is H-3 (tritium). The proportion, or percent abundance, of the various isotopes is fairly constant for each element.

On our Periodic Table, in the top right hand corner for each element, is a number called the "Average Atomic Mass" (AAM) for that element. The **average atomic mass** is the weighted average of the masses of all of the isotopes of that element.

eg. To calculate the average atomic mass for an element:

The element chlorine has two naturally occurring isotopes, Cl-35 and Cl-37.

- 75.77% of all chlorine atoms are Cl-35, mass 34.9689 u
- 24.23% of all chlorine atoms are Cl-37, mass 36.9659 u.

Calculate the average atomic mass of chlorine.

Average Atomic Mass = (Mass of Isotope Cl-35 x % abundance of isotope Cl-35) + (Mass of Isotope Cl-37 x % abundance of isotope Cl-37)

 $= (34.9689 \text{ u x } \frac{75.77}{100}) + (36.9659 \text{ u x } \frac{24.23}{100})$ = 35.4527 u= 35.45 u

Practice Questions:

- 1. Answer questions 2, 4, 5, and 6 on page 29 of Nelson Chemistry 11.
- 2. a) What are *isotopes*?
 - b) Gold has four isotopes. Their mass numbers are 195, 196, 198 and 199. Find the number of protons, electrons and neutrons in **neutral** atoms of these isotopes.
- 3. a) What information is given by each part of the expression ${}^{35}_{17}$ Cl?
 - b) We identify isotopes with symbols such as "U-238". What does the number "238" represent?
- 4. a) Carbon has two common isotopes: 98.89 % of carbon is C-12, atomic mass 12.000 u and 1.11% of carbon is C-13, atomic mass 13.0034 u. (A teeny, tiny amount of carbon is C-14, but the amount is too small to include in this calculation). Calculate the average atomic mass of carbon. (12.01 u)
 - b) Naturally occurring chromium consists of the following:
 - 4.31% of Cr-50, atomic mass of 49.946 u
 - 83.76% Cr-52, atomic mass of 51.941 u
 - 9.55% of Cr-53, atomic mass of 52.941 u
 - 2.38% Cr-54, atomic mass 53.939 u. Calculate the average atomic mass of chromium. (51.998 u)
 - c) Naturally occurring silicon consists of a mixture of three isotopes, as follows:
 - 92.23% of Si-28, atomic mass of 27.988 u
 - 4.67% Si-29, atomic mass of 28.976 u
 - 3.10% of Si-30, atomic mass of 29.974 u. Calculate the average atomic mass of silicon. (28.096 u)

Nuclear Chemistry: Radioisotopes and Types of Nuclear Radiation

The nucleus of an atom contains the	N	, all
packed together. But, like charges	Neutrons act as "	<i>"</i> in the
nucleus. They separate the protons and h	eip to	Ine
for as we know a newtron is made up of		to stabilize it. As
far as we know, a neutron is made up of _		·•
Most atomic nuclei are	- they do not break down. Ho	wever, the nuclei of
some of some elements ar	e unstable and tend to	·•
Unstable isotopes that break down or deca	ay in this way to give off	
	are called	or they are
said to be "". W	hen a nucleus breaks down, it	is a
called "	". Nuclear fission rel	leases
of energy. Nuclear reactors	such as the	
(developed in Canada, it stands for)
trap this energy and convert it to	·	
There are three main types of nuclear radi	iation	•
There are three main types of nuclear radi		•
1. Alpha radiation () is the release of a	a (w	ritten).
 alpha radiation is "relatively" 	and	
- it can travel only a	through the	e air
- it can be stopped by a	, it does not	matter
eg.		
eg.		
eg.		
2. Beta radiation () is the release of a _		<u> </u>
also called a	. Beta particles are released w	when a neutron breaks
down into a and a		
 beta radiation is relatively 	and is	than
alpha radiation		
- it can travel a	through the air	
- it can be stopped by a	that is 1 to 2 mm.	thick
eg.	(the	neutron is converted into a
		and

eg.

3. Gamma radiation () is the release of _	, but	that
we can detect; it is a form of		(the same "family"
of radiation as:)
- gamma radiation is	and	
- it can travel	through the air (eg.	from the sun to the
Earth). This is the form of radiation thaare concerned abou	tt	and
- it can be stopped by		
eg. cobalt-60 produces gamma radiation wh	nich is used for:	
• in	spices and grains	
sterilize male insects to	1 0	
• irradiate potatoes and onions to		
• sterilize		
irradiate food to	(but not in Canac	la)
Because there are	, we can not s	hon w gamma radiation
Half-live	s of Radioisotopes	
Each radioisotope breaks down, or decays,	at a	called its
"	lioactive substance is the	
		The
more unstable the radioisotope, the	the half-life and the	ne
. Radioactive iodine	(iodine-131) has a half-life	e of .

______. Radioactive iodine (iodine-131) has a half-life of ______, while radioactive plutonium (created in nuclear reactors) has a half-life of ______ (annum, or years) and oxygen-15 has a half-life of 9.98 minutes.

eg. The half-life of radioactive iodine (iodine-131). If we began with a 120 g sample of iodine-131, draw a graph showing the rate of radioactive decay of iodine-131.

Time (a)

Homework: Questions 9, 10, 12 and 13 on page 32 of your text. Read pages 34 and 35. Answer Q 20, 21 and 22 on page 35.

The Hydrogen Bright Line Spectrum

When hydrogen atoms are excited, they produce the following line spectrum:

wavelength energy				wavelength energy
 The lines on the hydrogen electrons can occupy of energy levels or shells electrons can't stay the energy levels are la called the a quantum is a 	n line spectrum ar only certain, specif around the nucleu energy abelled by an integ	re produced when ele fic is levels ger	ectrons drop between ene	rgy levels:
 when an electron is as the nucleus as possible its	close to , it is in rbs er from ential s back to gy) level, rgy as en off nce in energy evels; the greater thet	ne result of level to a lower level	n = $n =$	
Based on his experiments nucleus in,	s, Bohr proposed t	the " paths,	" model of the atom: distances from the	electrons orbit the nucleus.
Bohr's model stated that	every electron in a from the nucl nt of	a principal quantum leus, so every electro energy.	level (or shell) was	 had
Each quantum level can helectrons, the second level	hold a maximum o el can hold	of electrons. , the third	The first quantum level, the fourth	can hold, and fifth

Read section 1.4 in your text (Nelson 11, p. 37-40) and answer the following questions:

- 1. Which two questions could not be answered by Rutherford's model of the atom? (p.37)
- 2. What factor determines how much energy an "energy level" possesses?
- 3. Summarize the three assumptions made by Bohr in his model of electron arrangement.
- 4. Define quantum, ground state, bright line spectrum and continuous spectrum.