Electron Configurations, Rutherford-Bohr and Electron Dot Diagrams

Remember, when drawing electron dot diagrams:

- Write the symbol for the element and show only the outer (valence) electrons
- The number of valence electrons is equal to the Group Number (in Roman Numerals) for each element
- Follow the convention of only doubling up the electrons after all four "orbitals" have one electron each

eg. the electron dot diagram for phosphorus (Group V) would be $\cdot P \cdot$

Element	Atomic #	Electron Configuration	Rutherford-Bohr Diagram	# of Valence Electrons	Electron Dot Diagram
Na	11	$1s^22s^22p^63s^1$		1	Na •
Mg	12	$1s^22s^22p^63s^2$		2	• Mg •
0	8	$1s^22s^22p^4$		6	: • •
Al	13	$1s^22s^22p^63s^23p^1$		3	• Al• •
С	6	$1s^22s^22p^2$		4	• C •
Ν	7	$1s^22s^22p^3$		5	• N •

Homework:

After you have completed the above chart, draw the electron dot diagrams for atoms with atomic number 1, 9, 10, 14, 15, 16, 17, 18, 20, 34, 35, 36, 37, 38, 52, 53, 54, 55, 56 and 85

Atomic #1: hydrogen	Atomic #9: fluorine	Atomic #10: neon	Atomic #14: silicon
TT .	••	••	•
H•	• F	. Ne .	• 51 •
		••	•
Atomic #15: phosphorus	Atomic #16: sulfur	Atomic #17: chlorine	Atomic #18: argon
• •	••	••	••
• P •	S •	: Cl ·	Ar:
•	•	••	••
Atomic #20: calcium	Atomic #34: selenium	Atomic #35: bromine	Atomic #36: krypton
•	••	••	• •
Ca •	Se •	•Br•	Kr :
	•	••	••
Atomic #37: rubidium	Atomic #38: strontium	Atomic #52: tellurium	Atomic #53: iodine
	•	••	• •
Rb •	Sr •	Te •	: I •
		•	••
Atomic #54: xenon	Atomic #55: cesium	Atomic #56: barium	Atomic #85: astatine
••		•	• •
Xe :	Cs •	Ba•	At •
••			••

Answers to Homework: Ionic Bonding

1. Use EDDs to show the formation of the ionic compounds between:

a) Li and P

$$Li \cdot \underbrace{P}_{Ii} \cdot \underbrace{P}_{Ii}$$

b) Sc and N $Sc \rightarrow N$: \Box $[Sc]^{3+} + [N]^{3-} \Box ScN$

c) Ba and O

$$\overrightarrow{Ba} \xrightarrow{\bullet} \overrightarrow{O}: \quad \Longrightarrow \quad [Ba]^{2+} + \quad [\overrightarrow{\circ} \overrightarrow{O}:]^{2-} \quad \Longrightarrow \quad BaO$$

d) Al and S

$$\overrightarrow{Al} \cdot \overrightarrow{S} \cdot$$

Questions from pages 73 – 74 of text:

Q9. Follow steps as shown above

- a) lithium iodide will have the chemical formula LiI
- b) barium chloride will have the formula $BaC\ell_2$
- c) potassium oxide will have the formula K_2O
- d) calcium fluoride will have the formula CaF_2
- Q12. All five halogens will have seven valence electrons in their valence shell. Because all of these elements have the same number of valence electrons, they are part of a chemical family.

- Q13. Follow steps as shown above
- a) magnesium chloride: MgCl₂
 b) sodium sulfide: Na₂S
- c) aluminum oxide: Al_2O_3
- d) barium chloride: $BaC\ell_2$
- e) calcium fluoride: CaF₂
- f) sodium iodide: NaI
- g) potassium chloride: KCł

Sketch of a crystal lattice:

Answers to Homework: Covalent Bonding

- 1. Define octet rule, covalent bond, bonding capacity, molecular formula. See notes.
- 2. Explain how a *formula unit* of an ionic compound is different from the *molecular formula* of a covalent compound.

A formula unit is the lowest possible ratio in which the ions combine in an ionic compound. Because all of the negative ions are attracted to all of the positive ions in an ionic compound, the ions arrange themselves in a huge three-dimensional structure called a "crystal lattice". There are many positive and negative ions in the crystal lattice, so the formula unit indicates the simplest ratio of positive to negative ions. For example, in calcium chloride (CaCl₂), there are two chloride ions for every one calcium ion.

A molecular formula of a covalent compound is the exact number of each type of atom present in one discrete molecule. For example, glucose has the molecular formula $C_6H_{12}O_6$ which tells us that there are 6 carbon atoms, 12 hydrogen atoms and 6 oxygen atoms all chemically bonded together to form one molecule. The molecular formula of a covalent compound can NOT be reduced to lower terms, because then it would no longer be the same substance.

3. Draw the Lewis structures (structural formulas) for the following molecules. Be sure to draw in all unshared electron pairs.

u) HCN

 $\mathbf{H} - \mathbf{C} \equiv \mathbf{N}$

x) HCOOH y) CH₃COOH

- :0: ____ H—С—О—Н сн₃—С—О—Н

Homework: The Shapes of Molecules

1. Complete the chart below using AXE notation (AXnEm) to show the number of bonded electron groups on the central atom (n), number of lone electron pairs (LP) on the central atom (m), the total number of electron groups on the central atom (n+m) and the name of the shape of the molecule.

Drawing of Molecule	AXE Notation (AXnEm)	# of bonded electron groups on the central atom (n)	# of lone pairs on the central atom (m)	total # of electron groups on central atom (n + m)	Name of the Shape of the Molecule
X - A - X	AX ₂ E ₀	2	0	2	linear
$\begin{array}{c} \mathbf{X} \\ \mathbf{X}' \\ \mathbf{X}' \end{array} - \mathbf{X}$	AX ₃ E ₀	3	0	3	trigonal planar
x X X	AX_2E_1	2	1	3	V-shaped (bent)
X X X X X	AX ₄ E ₀	4	0	4	tetrahedral
	AX ₃ E ₁	3	1	4	trigonal pyramidal
x X	AX ₂ E ₂	2	2	4	V-shaped (bent)

- 2. For the following molecules:a) draw the molecule following the octet ruleb) determine the AXE notation for the shape of the moleculec) name the shape of the molecule

Drawing of Molecule	AXE Notation (AXnEm)	Name of Shape
$H-C \equiv N$	AX ₂ E ₀	linear
$\ddot{s} = s_i = \ddot{s}$:	AX_2E_0	linear
$\mathbf{\dot{o}} = \mathbf{c} \mathbf{\dot{c}}^{\mathbf{c}}$	AX ₃ E ₀	trigonal planar
: O = N - Br:	AX_2E_1	V-shaped (bent)
$\begin{array}{c} H - P - H \\ I \\ H \end{array}$	AX_3E_1	trigonal pyramidal
$\mathbf{S} = \mathbf{N} - \mathbf{F}$	AX_2E_1	V-shaped (bent)
• • • • • • • • • • • • • • • • • • •	AX_2E_2	V-shaped (bent)
$\begin{array}{c} \mathbf{:} \mathbf{Cl} \mathbf{:} \\ \mathbf{I} \\ \mathbf{F} - \mathbf{C} - \mathbf{Cl} \mathbf{:} \\ \mathbf{I} \\ \mathbf{Cl} \mathbf{:} \\ \mathbf{Cl} \mathbf{:} \end{array}$	AX_4E_0	tetrahedral
F - As - F I F	AX_3E_1	trigonal pyramidal
H - Se - H	AX_2E_2	V-shaped (bent)

Answers to Homework: Classifying Bonds and the Bonding Continuum

- 1. Read over this note very carefully.
- 2. For the following bonds:
- a) calculate the difference in electronegativity (ΔEN) between the bonding atoms
- b) determine the type of bonding that will occur: non-polar, polar or ionic
 - if the bond is non-polar, it is uncharged so do not draw in any charged regions
 - if the bond is polar, label the appropriate atoms with partial positive (δ +) and partial negative (δ -) charges
 - if the bond is ionic, label the appropriate atoms with full positive (+) and full negative (-) charges

δ^{+} H – O δ^{-}	⁺ Na – Br	$^{+}$ Mg – O [–]	$^{\delta^+}$ C – F $^{\delta^-}$	
$\Delta EN = 3.44 - 2.20$	$\Delta EN = 2.96 - 0.93$	$\Delta EN = 3.44 - 1.31$	ΔEN= 3.98 – 2.55	
= 1.24	= 2.03	= 2.13	= 1.43	
polar bond, so draw in	ionic bond, so draw in	ionic bond, so draw in	polar bond, so draw in	
partial charges	full + and – charges	full + and – charges	partial charges	
H - S	N – O	P – H	$^{\delta^{+}}B-Cl^{\delta^{-}}$	
$\Delta EN = 2.58 - 2.20$	$\Delta EN = 3.44 - 3.04$	$\Delta EN = 2.20 - 2.19$	$\Delta EN = 3.16 - 2.04$	
= 0.38	= 0.40	= 0.01	= 1.12	
non-polar covalent bond,	non-polar covalent bond,	non-polar covalent bond,	polar covalent bond, so	
do not draw any charges	do not draw any charges	do not draw any charges	draw in partial charges	
⁺ K – Cl [–]	C – H	$^{\delta-}$ F – Se $^{\delta+}$	S – C	
$\Delta EN = 3.16 - 0.82$	$\Delta EN = 2.55 - 2.20$	$\Delta EN = 3.98 - 2.55$	$\Delta EN = 2.58 - 2.55$	
= 2.34	= 0.35	= 1.43	= 0.03	
ionic bond, so draw in	non-polar covalent bond,	polar covalent bond, so	non-polar covalent bond,	
full + and – charges	do not draw any charges	draw in partial charges	do not draw any charges	

3. Give three examples of bonds for which $\Delta EN = 0.0$.

Any bond between atoms of the same element will have $\Delta EN = 0.0$, for example, O - O, H - H, Br - Br, and any of the other HOBrFINCl elements, or C - C bonds etc. Do not use metal – metal as your example, because two metal atoms do not bond in this way.

4. For the following molecules, determine the type of bond(s) and label any partial or full charges.

Hydrogen cyanide (a poisonous gas) HCN	Dihydrogen Monoxide (water) H ₂ O
$H - C \equiv N$:	$\delta + \mathbf{H} - \mathbf{O}_{\delta -} - \mathbf{H} \delta + \mathbf{O}_{\delta -}$
$\Delta EN_{C-H} = 2.55 - 2.20$	$\Delta EN = 3.44 - 2.20$
= 0.35 : non-polar bond	= 1.24
$\Delta EN_{C-N} = 3.04 - 2.55$ = 0.49 : non-polar bond	: polar bond, so draw in partial charges
no polar bonds, so do not draw in any charges	

Practice Determining the Polarity of Molecules

CO_2	H_2S $H - S - H$		
AXE notation: AX_2E_0	AXE notation: AX_2E_2		
Name of Shape: linear	Name of Shape: bent or V-shaped		
Symmetry of Shape: symmetrical	Symmetry of Shape: asymmetrical		
Symmetry of Atoms: symmetrical	Symmetry of Atoms: symmetrical		
$\triangle EN_{C-O} = 2.55 - 3.44 $	$\Delta EN_{S-H} = 2.58 - 2.20 $		
$= 0.89 \therefore$ polar bonds	$= 0.38$ \therefore non-polar bonds		
Polarity of Molecule: it is symmetrical \therefore non-polar	Polarity of Molecule: asymmetrical with no polar bonds \therefore slightly polar		
charges: no charges, they cancer out.	Charges? very slight charges. do not label them		
CH ₂ O $\delta - \bullet \bullet \delta + H$	NOF $\mathbf{\dot{O}} = \mathbf{N} - \mathbf{F}$		
AXE notation: AX_3E_0 Name of Shape: trigonal planar Symmetry of Shape: symmetrical Symmetry of Atoms: asymmetrical	AXE notation: AX_2E_1 δ_+ Name of Shape: bent or V-shapedSymmetry of Shape: asymmetricalSymmetry of Atoms: asymmetrical		
$\Delta EN_{C-O} = 2.55 - 3.44 $	$\Delta EN_{N-O} = 3.04 - 3.44 $		
$= 0.89 \therefore$ polar bonds	$= 0.40 \therefore$ non-polar bond		
$\Delta EN_{C-H} = 2.55 - 2.20 $	$\Delta EN_{N-F} = 3.04 - 3.98 $		
$= 0.35 \therefore$ non-polar bonds	$= 0.94 \therefore$ polar bond		
Polarity of Molecule: asymmetrical with at least one polar bond : very polar.	Polarity of Molecule: asymmetrical with at least one polar bond : very polar.		
Charges? Yeslabel only the polar bond	Charges? Yeslabel only the polar bond.		
PH ₂ I •••	CF ₄ F		
AXE notation: AX_3E_1 Shape: trigonal pyramidal Symmetry of Shape: asymmetrical Symmetry of Atoms: asymmetrical $\Delta EN_{P-I} = 2.19 - 2.66 $ $= 0.47 \therefore$ non-polar bond $\Delta EN_{P-H} = 2.19 - 2.20 $ $= 0.01 \therefore$ non-polar bonds Polarity of Molecule: asymmetrical with no polar bonds \therefore slightly polar	AXE notation: AX_4E_0 Shape: tetrahedral Symmetry of Shape: symmetrical Symmetry of Atoms: symmetrical $\Delta EN_{C-F} = 2.55 - 3.98 $ $= 1.43 \therefore$ polar bonds Polarity of Molecule: it is symmetrical \therefore non-polar Charges? No charges, they cancel out.		
Charges? Very slight charges, do not label them			

Drawing of Molecule AXE Notation and Polarity of Molecule Name of Shape <u>0</u>-... asymmetrical shape • $\delta + H - N - H\delta +$ polar bonds ($\triangle EN = 0.84$) AX_3E_1 L trigonal pyramidal : very polar molecule $H\delta +$ asymmetrical shape $\delta +$ • polar bonds ($\triangle EN = 1.40$) AX_2E_2 : very polar molecule V-shaped (bent) : F : symmetrical shape • Br asymmetrical atoms • non-polar bonds ($\triangle EN = 0.41, 0.11$) AX_4E_0 : slightly polar molecule (don't draw charges) tetrahedral symmetrical shape • asymmetrical atoms • AX_2E_0 $H-C \equiv N$ linear non-polar bonds ($\triangle EN = 0.35, 0.49$) : slightly polar molecule (don't draw charges) • symmetrical shape asymmetrical atoms • AX_3E_0 polar bonds ($\triangle EN = 0.03, 1.43$) • trigonal planar •δ-: very polar molecule asymmetrical shape • $\delta +$ δasymmetrical atoms • AX_2E_1 $\mathbf{O} = \mathbf{P}$ Ct: V-shaped (bent) polar bonds ($\triangle EN = 1.25, 0.97$) • : very polar molecule • symmetrical shape symmetrical atoms • $\mathbf{\dot{s}} = \mathbf{c} = \mathbf{\ddot{s}}$: AX_2E_0 linear non-polar bonds ($\triangle EN = 0.03$) • : non-polar molecule asymmetrical shape • • asymmetrical atoms AX_2E_1 V-shaped (bent) non-polar bonds ($\triangle EN = 0.46, 0.38$) : slightly polar molecule (don't draw charges) asymmetrical shape • Cl :0δ−ĽCL - As · polar bonds ($\triangle EN = 1.00$) AX_3E_1 trigonal pyramidal : very polar molecule

Homework: Draw stick diagrams for the compounds below. Determine the overall polarity of each molecule. Label any charges. NH_3 SF_2 CBr_2I_2 HCN CSF_2 $PC\ellO$ CS_2 NSI $AsC\ell_3$

Answers to Homework: Using Polarity of Molecules to Predict Physical Properties of Substances

This chart summarizes the strength of intermolecular attraction and resulting physical properties for the compounds from the Unit 03 Handouts to Print: Practice Determining the Polarity of Molecules.

Compound	Description of Molecule	Polarity of Molecules	Description of Charges	Strength of IMFs	Predicted State at SATP	Predicted Melting and Boiling Points	Predicted Solubility in Water
CO ₂	Symmetrical	Non-polar	No charges	Very Weak	Gas	Very low	Insoluble
H ₂ S	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
CH ₂ O	Asymmetrical with at least one polar bond	Very polar	Partial charges (label δ - & δ + on polar bonds)	Medium	Liquid	Low/medium	Soluble
NOF	Asymmetrical with at least one polar bond	Very polar	Partial charges (label δ - & δ + on polar bonds)	Medium	Liquid	Low/medium	Soluble
PH ₂ I	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
CF ₄	Symmetrical	Non-polar	No charges	Very Weak	Gas	Very low	Insoluble
NH ₃	Asymmetrical with at least one N-H, O-H or F-H bond	Very polar + hydrogen bonding	Strong partial charges (label on polar bonds)	Strong	Gas/Liquid -because NH ₃ weighs very little, it is a gas	Medium	Completely Soluble
SF ₂	Asymmetrical with at least one polar bond	Very polar	Partial charges (label δ - & δ + on polar bonds)	Medium	Liquid	Low/medium	Soluble
CBr ₂ I ₂	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
HCN	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
CSF ₂	Asymmetrical with at least one polar bond	Very polar	Partial charges (label δ - & δ + on polar bonds)	Medium	Liquid	Low/medium	Soluble
ΡCŧΟ	Asymmetrical with at least one polar bond	Very polar	Partial charges (label δ - & δ + on polar bonds)	Medium	Liquid	Low/medium	Soluble
CS ₂	Symmetrical	Non-polar	No charges	Very Weak	Gas	Very low	Insoluble
NSI	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
AsCl ₃	Asymmetrical with at least one polar bond	Very polar	Partial charges (label δ - & δ + on polar bonds)	Medium	Liquid	Low/medium	Soluble

* Make sure you know why NOF, CH₂O and HCN molecules are NOT able to hydrogen bond to each other