Remember, when drawing electron dot diagrams:

- Write the symbol for the element and show only the outer (valence) electrons
- The number of valence electrons is equal to the Group Number (in Roman Numerals) for each element
- Follow the convention of only doubling up the electrons after all four "orbitals" have one electron each
eg. the electron dot diagram for phosphorus (Group V) would be
: P .

Element	$\begin{gathered} \hline \text { Atomic } \\ \# \\ \hline \end{gathered}$	Electron Configuration	Rutherford-Bohr Diagram	\# of Valence Electrons	$\begin{gathered} \hline \hline \text { Electron Dot } \\ \text { Diagram } \\ \hline \end{gathered}$
Na	11	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$		1	Na ${ }^{\text {- }}$
$\mathbf{M g}$	12	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$		2	$\mathbf{M g} \cdot$
0	8	$1 s^{2} 2 s^{2} 2 p^{4}$		6	$\stackrel{\bullet}{0}$
Al	13	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$		3	Al•
C	6	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$		4	$\cdot \stackrel{\bullet}{\mathbf{C}}$
\mathbf{N}	7	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$		5	$\cdot \mathbf{N} \cdot$

Homework:
After you have completed the above chart, draw the electron dot diagrams for atoms with atomic number $1,9,10,14,15,16,17,18,20,34,35,36,37,38,52,53,54,55,56$ and 85

Atomic \#1: hydrogen H•	Atomic \#9: fluorine $\bullet \stackrel{\bullet}{\mathbf{F}}$ •	Atomic \#10: neon \bullet - Ne :	Atomic \#14: silicon - $\mathbf{S i}$ -
Atomic \#15: phosphorus	Atomic \#16: sulfur	Atomic \#17: chlorine	Atomic \#18: argon $\ddot{\mathrm{Ar}}:$ -•
Atomic \#20: calcium Ca	Atomic \#34: selenium $\bullet \stackrel{\bullet}{\text { Se }}$ • -	Atomic \#35: bromine : Br ${ }^{-}$ -•	Atomic \#36: krypton \bullet - Kr !
Atomic \#37: rubidium Rb ${ }^{-}$	Atomic \#38: strontium Sr .	Atomic \#52: tellurium \bullet - ${ }^{\bullet}$ •	Atomic \#53: iodine
Atomic \#54: xenon \bullet - Xe	Atomic \#55: cesium Cs.	Atomic \#56: barium Ba•	Atomic \#85: astatine -軘 -•

1. Use EDDs to show the formation of the ionic compounds between:
a) Li and P

b) Sc and N

c) Ba and O

d) Al and S

Questions from pages 73-74 of text:
Q9. Follow steps as shown above
a) lithium iodide will have the chemical formula LiI
b) barium chloride will have the formula BaC_{2}
c) potassium oxide will have the formula $\mathrm{K}_{2} \mathrm{O}$
d) calcium fluoride will have the formula CaF_{2}

Q12. All five halogens will have seven valence electrons in their valence shell. Because all of these elements have the same number of valence electrons, they are part of a chemical family.

Q13. Follow steps as shown above
a) magnesium chloride: MgCl_{2}
b) sodium sulfide: $\mathrm{Na}_{2} \mathrm{~S}$
c) aluminum oxide: $\mathrm{Al}_{2} \mathrm{O}_{3}$
d) barium chloride: BaCl_{2}
e) calcium fluoride: CaF_{2}
f) sodium iodide: NaI
g) potassium chloride: $\mathrm{KC} \ell$

Sketch of a crystal lattice:

1. Define octet rule, covalent bond, bonding capacity, molecular formula. See notes.
2. Explain how a formula unit of an ionic compound is different from the molecular formula of a covalent compound.

A formula unit is the lowest possible ratio in which the ions combine in an ionic compound. Because all of the negative ions are attracted to all of the positive ions in an ionic compound, the ions arrange themselves in a huge three-dimensional structure called a "crystal lattice". There are many positive and negative ions in the crystal lattice, so the formula unit indicates the simplest ratio of positive to negative ions. For example, in calcium chloride $\left(\mathrm{CaCl}_{2}\right)$, there are two chloride ions for every one calcium ion.

A molecular formula of a covalent compound is the exact number of each type of atom present in one discrete molecule. For example, glucose has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ which tells us that there are 6 carbon atoms, 12 hydrogen atoms and 6 oxygen atoms all chemically bonded together to form one molecule. The molecular formula of a covalent compound can NOT be reduced to lower terms, because then it would no longer be the same substance.
3. Draw the Lewis structures (structural formulas) for the following molecules. Be sure to draw in all unshared electron pairs.
a) Br_{2}

e) $\mathrm{P}_{2} \mathrm{H}_{4}$

i) $\mathrm{C}_{2} \mathrm{H}_{6}$

m) $\mathrm{N}_{2} \mathrm{H}_{2}$

$\mathbf{H}-\ddot{\mathrm{N}}=\ddot{\mathrm{N}}-\mathbf{H}$

q) $\mathrm{C}_{3} \mathrm{H}_{8}$

b) $\mathrm{C} \ell \mathrm{F}$

f) CHCl_{3}

Cle Cle Cle Cle
H
j) $\mathrm{C}_{2} \mathrm{H}_{4}$
$\begin{array}{cc}\mathbf{H}-\mathrm{C} & \mathrm{C}-\mathrm{H} \\ \mathrm{I} & \mathrm{I} \\ \mathbf{H} & \mathbf{H}\end{array}$
n) N_{2}
: N 三 N :
r) $\mathrm{C}_{4} \mathrm{H}_{10}$

k) $\mathrm{C}_{2} \mathrm{H}_{2}$

1) CO_{2}
c) PH_{3}

g) $\mathrm{H}_{2} \mathrm{~S}$

$\mathrm{H}-\stackrel{\bullet}{\mathrm{O}}-\stackrel{\bullet}{\mathrm{O}}-\mathbf{H}$
h) $\mathrm{H}_{2} \mathrm{O}_{2}$

o) SiO_{2}
p) HNO_{2}
$: \dddot{\mathrm{o}}=\mathrm{Si}=\ddot{\mathrm{o}}:$
s) $\mathrm{C}_{4} \mathrm{H}_{8}$ (the double bond can be between any two carbon atoms)

t) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

u) HCN.
v) $\mathrm{C}_{6} \mathrm{H}_{14}$

w) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$

y) $\mathrm{CH}_{3} \mathrm{COOH}$
$\stackrel{: \mathrm{O}}{\mathrm{CH}_{3}-\mathrm{C}-\stackrel{0}{\mathrm{O}}-\mathrm{H}}$
1. Complete the chart below using AXE notation (AXnEm) to show the number of bonded electron groups on the central atom (n), number of lone electron pairs (LP) on the central atom (m), the total number of electron groups on the central atom $(\mathrm{n}+\mathrm{m})$ and the name of the shape of the molecule.

Drawing of Molecule	AXE Notation (AXnEm)	\# of bonded electron groups on the central atom (n)	\# of lone pairs on the central atom (m)	total \# of electron groups on central atom $(\mathbf{n}+\mathbf{m})$	Name of the Shape of the Molecule
$\mathbf{X}-\mathbf{A}-\mathbf{X}$	$\mathrm{AX}_{2} \mathrm{E}_{0}$	2	0	2	linear
$X^{\prime \prime}{ }^{\prime} A-X$	$\mathrm{AX}_{3} \mathrm{E}_{0}$	3	0	3	trigonal planar
	$\mathrm{AX}_{2} \mathrm{E}_{1}$	2	1	3	V-shaped (bent)
	$\mathrm{AX}_{4} \mathrm{E}_{0}$	4	0	4	tetrahedral
	$\mathrm{AX}_{3} \mathrm{E}_{1}$	3	1	4	trigonal pyramidal
	$\mathrm{AX}_{2} \mathrm{E}_{2}$	2	2	4	V-shaped (bent)

2. For the following molecules:
a) draw the molecule following the octet rule
b) determine the AXE notation for the shape of the molecule
c) name the shape of the molecule

Drawing of Molecule	AXE Notation (AXnEm)	Name of Shape
$\mathbf{H}-\mathbf{C} \equiv \mathbf{N}$	$\mathrm{AX}_{2} \mathrm{E}_{0}$	linear
$\because \stackrel{O}{\mathbf{S}}=\mathrm{Si}=\ddot{\mathrm{S}}:$	$\mathrm{AX}_{2} \mathrm{E}_{0}$	linear
	$\mathrm{AX}_{3} \mathrm{E}_{0}$	trigonal planar
$\ddot{\mathrm{O}}=\ddot{\mathrm{N}}-\ddot{\mathrm{Br}} \stackrel{\bullet}{\bullet}$	$\mathrm{AX}_{2} \mathrm{E}_{1}$	V-shaped (bent)
	$\mathrm{AX}_{3} \mathrm{E}_{1}$	trigonal pyramidal
$: \stackrel{\bullet}{S}=\stackrel{\bullet}{N}-\stackrel{\bullet}{\mathrm{F}}:$	$\mathrm{AX}_{2} \mathrm{E}_{1}$	V-shaped (bent)
	$\mathrm{AX}_{2} \mathrm{E}_{2}$	V-shaped (bent)
	$\mathrm{AX}_{4} \mathrm{E}_{0}$	tetrahedral
	$\mathrm{AX}_{3} \mathrm{E}_{1}$	trigonal pyramidal
$\mathrm{H}-\underset{\bullet}{\mathbf{S} e}-\mathbf{H}$	$\mathrm{AX}_{2} \mathrm{E}_{2}$	V-shaped (bent)

Answers to Homework: Classifying Bonds and the Bonding Continuum

1. Read over this note very carefully.
2. For the following bonds:
a) calculate the difference in electronegativity ($\triangle \mathrm{EN}$) between the bonding atoms
b) determine the type of bonding that will occur: non-polar, polar or ionic

- if the bond is non-polar, it is uncharged so do not draw in any charged regions
- if the bond is polar, label the appropriate atoms with partial positive ($\delta+$) and partial negative ($\delta-$) charges
- if the bond is ionic, label the appropriate atoms with full positive $(+)$ and full negative $(-)$ charges

$\delta+\mathrm{H}-\mathrm{O}{ }^{\delta-}$ $\begin{aligned} \Delta \mathrm{EN} & =3.44-2.20 \\ & =1.24 \end{aligned}$ polar bond, so draw in partial charges	$\begin{aligned} & +\mathrm{Na}-\mathrm{Br}^{-} \\ \triangle \mathrm{EN} & =2.96-0.93 \\ & =2.03 \end{aligned}$ ionic bond, so draw in full + and - charges	$\begin{aligned} &+ \\ & \mathrm{Mg}-\mathrm{O}^{-} \\ & \triangle \mathrm{EN}=3.44-1.31 \\ &=2.13 \end{aligned}$ ionic bond, so draw in full + and - charges	$\begin{aligned} \delta^{+} & \mathrm{C}-\mathrm{F}^{\delta-} \\ \Delta \mathrm{EN} & =3.98-2.55 \\ & =1.43 \end{aligned}$ polar bond, so draw in partial charges
$\begin{gathered} \mathrm{H}-\mathrm{S} \\ \begin{aligned} \Delta \mathrm{EN}= & 2.58-2.20 \\ = & 0.38 \end{aligned} \end{gathered}$ non-polar covalent bond, do not draw any charges	$\begin{aligned} & \mathrm{N}-\mathrm{O} \\ & \begin{aligned} \mathrm{EN} & =3.44-3.04 \\ & =0.40 \end{aligned} \end{aligned}$ non-polar covalent bond, do not draw any charges	$\begin{gathered} \mathrm{P}-\mathrm{H} \\ \begin{aligned} \mathrm{EN}= & =2.20-2.19 \\ = & 0.01 \end{aligned} \end{gathered}$ non-polar covalent bond, do not draw any charges	$\begin{gathered} \delta^{\delta+} \mathrm{B}-\mathrm{Cl}^{\delta-} \\ \begin{array}{l} \Delta \mathrm{EN}=3.16-2.04 \\ \quad=1.12 \\ \text { polar covalent bond, so } \\ \text { draw in partial charges } \end{array} \end{gathered}$
$\begin{aligned} &+ \mathrm{K}-\mathrm{Cl} \\ &- \\ & \Delta \mathrm{EN}=3.16-0.82 \\ &=2.34 \end{aligned}$ ionic bond, so draw in full + and - charges	$\begin{gathered} \mathrm{C}-\mathrm{H} \\ \begin{aligned} \mathrm{EN} & =2.55-2.20 \\ = & 0.35 \end{aligned} \end{gathered}$ non-polar covalent bond, do not draw any charges	$\begin{gathered} \delta^{\delta-} \mathrm{F}-\mathrm{Se}^{\delta+} \\ \begin{array}{l} \mathrm{EN}=3.98-2.55 \\ \quad=1.43 \\ \text { polar covalent bond, so } \\ \text { draw in partial charges } \end{array} \end{gathered}$	$\begin{aligned} & \mathrm{S}-\mathrm{C} \\ & \begin{aligned} \mathrm{EN}= & 2.58-2.55 \\ = & 0.03 \end{aligned} \end{aligned}$ non-polar covalent bond, do not draw any charges

3. Give three examples of bonds for which $\Delta \mathrm{EN}=0.0$.

Any bond between atoms of the same element will have $\Delta \mathrm{EN}=0.0$, for example, $\mathrm{O}-\mathrm{O}, \mathrm{H}-\mathrm{H}$, $\mathrm{Br}-\mathrm{Br}$, and any of the other HOBrFINCl elements, or $\mathrm{C}-\mathrm{C}$ bonds etc. Do not use metal - metal as your example, because two metal atoms do not bond in this way.
4. For the following molecules, determine the type of bond(s) and label any partial or full charges.

Hydrogen cyanide (a poisonous gas) HCN

$$
\begin{aligned}
& \mathbf{H}-\mathbf{C} \overline{\mathbf{N}} \\
& \\
& \Delta \mathrm{EN}_{\mathrm{C}-\mathrm{H}}=2.55-2.20 \\
&=0.35 \therefore \text { non-polar bond } \\
& \Delta \mathrm{EN}_{\mathrm{C}-\mathrm{N}}=3.04-2.55 \\
&=0.49 \therefore \text { non-polar bond }
\end{aligned}
$$

no polar bonds, so do not draw in any charges

Dihydrogen Monoxide (water) $\mathbf{H}_{2} \mathrm{O}$

$$
{ }^{\delta+} \mathbf{H}-\underset{\substack{0}}{\ddot{\mathbf{O}}}-\mathbf{H}^{\delta+}
$$

$\Delta \mathrm{EN}=3.44-2.20$

$$
=1.24
$$

\therefore polar bond, so draw in partial charges

Methanol (a poisonous alcohol) $\mathrm{CH}_{3} \mathrm{OH}$	Formic Acid (in red ant stings) HCOOH
$\begin{aligned} \Delta \mathrm{EN}_{\mathrm{C}-\mathrm{H}} & =2.55-2.20 \\ & =0.35 \therefore \text { non-polar, no charges } \\ \Delta \mathrm{EN}_{\mathrm{C}-\mathrm{O}} & =3.44-2.55 \\ & =0.89 \therefore \text { polar, partial charges } \\ \Delta \mathrm{EN}_{\mathrm{O}-\mathrm{H}} & =3.44-2.20 \\ & =1.24 \therefore \text { polar, partial charges } \end{aligned}$	$\begin{aligned} \Delta \mathrm{EN}_{\mathrm{C}-\mathrm{H}} & =2.55-2.20 \\ & =0.35 \therefore \text { non-polar, no charges } \\ \Delta \mathrm{EN}_{\mathrm{C}-\mathrm{O}} & =3.44-2.55 \\ & =0.89 \therefore \text { polar, partial charges } \\ \Delta \mathrm{EN}_{\mathrm{O}-\mathrm{H}} & =3.44-2.20 \\ & =1.24 \therefore \text { polar, partial charges } \end{aligned}$

CO_{2} $: \ddot{O}=C=\ddot{O}$	$\mathrm{H}_{2} \mathrm{~S}$ $H-\stackrel{\bullet}{S}-H$
AXE notation: $\mathrm{AX}_{2} \mathrm{E}_{0}$	AXE notation: $\mathrm{AX}_{2} \mathrm{E}_{2}$
Name of Shape: linear	Name of Shape: bent or V-shaped
Symmetry of Shape: symmetrical	Symmetry of Shape: asymmetrical
Symmetry of Atoms: symmetrical	Symmetry of Atoms: symmetrical
$\Delta \mathrm{EN}_{\mathrm{C}-\mathrm{O}}=\mid 2.55-3.44$	$\Delta \mathrm{EN}_{\text {S } \mathrm{H}}=\|2.58-2.20\|$
$=0.89 \therefore$ polar bonds	$=0.38 \therefore$ non-polar bonds
Polarity of Molecule: it is symmetrical \therefore non-polar Charges? No charges, they cancel out.	Polarity of Molecule: asymmetrical with no polar bonds \therefore slightly polar
	Charges? very slight charges, do not label them
$\mathrm{CH}_{2} \mathrm{O}$ $\delta-. . \quad \delta+, \mathbf{H}$	NOF
AXE notation: $\mathrm{AX}_{3} \mathrm{E}_{0}$	AXE notation: $\mathrm{AX}_{2} \mathrm{E}_{1} \quad \delta+\quad \bullet$ -
Name of Shape: trigonal planar	Name of Shape: bent or V-shaped
Symmetry of Shape: symmetrical	Symmetry of Shape: asymmetrical
Symmetry of Atoms: asymmetrical	Symmetry of Atoms: asymmetrical
$\Delta \mathrm{EN}_{\text {C-O }}=\mid 2.55-3.44$	$\Delta \mathrm{EN}_{\mathrm{N}-\mathrm{O}}=\|3.04-3.44\|$
$=0.89 \therefore$ polar bonds	$=0.40 \therefore$ non-polar bond
$\Delta \mathrm{EN}_{\mathrm{C}-\mathrm{H}}=\mid 2.55-2.20$	$\Delta \mathrm{EN}_{\mathrm{N}-\mathrm{F}}=\|3.04-3.98\|$
$=0.35 \therefore$ non-polar bond	$=0.94 \therefore$ polar bond
Polarity of Molecule: asymmetrical with at least one polar bond \therefore very polar.	Polarity of Molecule: asymmetrical with at least one polar bond \therefore very polar.
Charges? Yes...label only the polar bond	Charges? Yes...label only the polar bond.
$\mathrm{PH}_{2} \mathrm{I}$	CF_{4}
AXE notation: $\mathrm{AX}_{3} \mathrm{E}_{1}$	AXE notation: $\mathrm{AX}_{4} \mathrm{E}_{0}$
Shape: trigonal pyramidal	Shape: tetrahedral $\quad: \mathbf{F}-\mathbf{C}-\mathbf{F}$:
Symmetry of Shape: asymmetrical	Symmetry of Shape: symmetrical ${ }^{\bullet \bullet}$ I \bullet^{\bullet}
Symmetry of Atoms: asymmetrical	Symmetry of Atoms: symmetrical : F :
$\Delta \mathrm{EN}_{\text {P-I }}=\mid 2.19-2.66$	$\Delta \mathrm{EN}_{\text {C }-\mathrm{F}}=\|2.55-3.98\|$
$=0.47 \therefore$ non-polar bond	$=1.43 \therefore$ polar bonds
$\Delta \mathrm{EN}_{\mathrm{P}-\mathrm{H}}=\|2.19-2.20\|$	
$=0.01 \therefore$ non-polar bonds	Polarity of Molecule: it is symmetrical \therefore non-polar
Polarity of Molecule: asymmetrical with no polar bonds \therefore slightly polar	Charges? No charges, they cancel out.
Charges? Very slight charges, do not label them	

Homework: Draw stick diagrams for the compounds below. Determine the overall polarity of each molecule. Label any charges. $\begin{array}{lllllllll}\mathrm{NH}_{3} & \mathrm{SF}_{2} & \mathrm{CBr}_{2} \mathrm{I}_{2} & \mathrm{HCN} & \mathrm{CSF}_{2} & \mathrm{PClO} & \mathrm{CS}_{2} & \mathrm{NSI} & \mathrm{AsCl}_{3}\end{array}$

Drawing of Molecule	AXE Notation and Name of Shape	Polarity of Molecule
	$\mathrm{AX}_{3} \mathrm{E}_{1}$ trigonal pyramidal	- asymmetrical shape - polar bonds $(\triangle \mathrm{EN}=0.84)$ \therefore very polar molecule
	$\begin{gathered} \mathrm{AX}_{2} \mathrm{E}_{2} \\ \text { V-shaped (bent) } \end{gathered}$	- asymmetrical shape - polar bonds $(\triangle \mathrm{EN}=1.40)$ \therefore very polar molecule
	$\begin{aligned} & \mathrm{AX}_{4} \mathrm{E}_{0} \\ & \text { tetrahedral } \end{aligned}$	- symmetrical shape - asymmetrical atoms - non-polar bonds ($\triangle \mathrm{EN}=0.41,0.11$) \therefore slightly polar molecule (don't draw charges)
$\mathbf{H}-\mathbf{C} \equiv \mathbf{N}$	$\mathrm{AX}_{2} \mathrm{E}_{0}$ linear	- symmetrical shape - asymmetrical atoms - non-polar bonds ($\triangle \mathrm{EN}=0.35,0.49$) \therefore slightly polar molecule (don't draw charges)
$: \stackrel{\bullet}{\mathbf{S}}=\mathbf{C}^{\delta+}, \stackrel{\stackrel{\mathbf{F}}{\mathbf{F}}}{\stackrel{\bullet}{\mathbf{F}}}: \delta-\delta-$	$\begin{gathered} \mathrm{AX}_{3} \mathrm{E}_{0} \\ \text { trigonal planar } \end{gathered}$	- symmetrical shape - asymmetrical atoms - polar bonds ($\triangle \mathrm{EN}=0.03,1.43$) \therefore very polar molecule
$\stackrel{\delta-\bullet}{\dot{O}}=\stackrel{\bullet+}{\mathbf{P}}-\stackrel{\bullet}{\mathbf{C}} \ell_{\bullet}^{\delta-}$	$\begin{gathered} \mathrm{AX}_{2} \mathrm{E}_{1} \\ \text { V-shaped (bent) } \end{gathered}$	- asymmetrical shape - asymmetrical atoms - polar bonds $(\triangle \mathrm{EN}=1.25,0.97)$ \therefore very polar molecule
$\ddot{:}=\mathbf{C}=\ddot{S}$	$\mathrm{AX}_{2} \mathrm{E}_{0}$ linear	- symmetrical shape - symmetrical atoms - non-polar bonds ($\triangle \mathrm{EN}=0.03$) \therefore non-polar molecule
$: \ddot{S}=\ddot{N}-\ddot{I}:$	$\begin{gathered} \mathrm{AX}_{2} \mathrm{E}_{1} \\ \text { V-shaped (bent) } \end{gathered}$	- asymmetrical shape - asymmetrical atoms - non-polar bonds ($\triangle \mathrm{EN}=0.46,0.38$) \therefore slightly polar molecule (don't draw charges)
	$\mathrm{AX}_{3} \mathrm{E}_{1}$ trigonal pyramidal	- asymmetrical shape - polar bonds $(\triangle \mathrm{EN}=1.00)$ \therefore very polar molecule

Answers to Homework:
Using Polarity of Molecules to Predict Physical Properties of Substances
This chart summarizes the strength of intermolecular attraction and resulting physical properties for the compounds from the Unit 03 Handouts to Print: Practice Determining the Polarity of Molecules.

Compound	Description of Molecule	Polarity of Molecules	Description of Charges	Strength of IMFs	Predicted State at SATP	Predicted Melting and Boiling Points	Predicted Solubility in Water
CO_{2}	Symmetrical	Non-polar	No charges	Very Weak	Gas	Very low	Insoluble
$\mathrm{H}_{2} \mathrm{~S}$	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
$\mathrm{CH}_{2} \mathrm{O}$	Asymmetrical with at least one polar bond	Very polar	Partial charges (label $\delta-\& \delta+$ on polar bonds)	Medium	Liquid	Low/medium	Soluble
NOF	Asymmetrical with at least one polar bond	Very polar	Partial charges (label $\delta-\& \delta+$ on polar bonds)	Medium	Liquid	Low/medium	Soluble
$\mathbf{P H}_{2} \mathrm{I}$	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
CF4	Symmetrical	Non-polar	No charges	Very Weak	Gas	Very low	Insoluble
$\mathbf{N H}_{3}$	$\begin{aligned} & \text { Asymmetrical } \\ & \text { with at least } \\ & \text { one N-H, O-H } \\ & \text { or F-H bond } \end{aligned}$	Very polar + hydrogen bonding	Strong partial charges (label on polar bonds)	Strong	Gas/Liquid -because NH_{3} weighs very little, it is a gas	Medium	Completely Soluble
SF_{2}	Asymmetrical with at least one polar bond	Very polar	Partial charges (label $\delta-\& \delta+$ on polar bonds)	Medium	Liquid	Low/medium	Soluble
$\mathrm{CBr}_{2} \mathbf{I}_{2}$	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
HCN	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
CSF_{2}	Asymmetrical with at least one polar bond	Very polar	Partial charges (label $\delta-\& \delta+$ on polar bonds)	Medium	Liquid	Low/medium	Soluble
PClO	Asymmetrical with at least one polar bond	Very polar	Partial charges (label $\delta-\& \delta+$ on polar bonds)	Medium	Liquid	Low/medium	Soluble
CS ${ }_{2}$	Symmetrical	Non-polar	No charges	Very Weak	Gas	Very low	Insoluble
NSI	Asymmetrical with no polar bonds	Slightly polar	Slight partial charges (do not label)	Weak	Gas	Low	Slightly soluble
AsCl_{3}	Asymmetrical with at least one polar bond	Very polar	Partial charges (label $\delta-\& \delta+$ on polar bonds)	Medium	Liquid	Low/medium	Soluble

* Make sure you know why NOF, $\mathrm{CH}_{2} \mathrm{O}$ and HCN molecules are NOT able to hydrogen bond to each other

