SCH 3UI Unit 4 Outline: Nomenclature

Lesson	Topics Covered	Homework Questions and Assignments
1	 Note: Nomenclature of Binary Ionic Compounds definition of binary ionic compounds multivalent metal ions, Stock system classical naming system (ous/ic) 	 complete handout: Nomenclature #1: Binary Ionic Compounds
2	Note: Naming Compounds with Polyatomic Ions ates ites perates hypoites 	 complete handout: Nomenclature #2: Polyatomic Ionic Compounds be sure you understand the "system" for naming "ides", "hypoites", "ites", "ates" and "perates" in preparation for the next lesson on naming acids
3	 Note: Naming Acids definition of acid binary acids oxy-acids 	 review the different naming systems for naming binary vs. oxy-acids complete handout: complete handout: Nomenclature #4: Acids and Review
4	 Note: Odds and Ends When Naming Ionic Compounds peroxides complex ions with hydrogen hydrates Assignment: Classical and IUPAC Naming 	 complete handout Nomenclature #5: Odds and Ends When Naming Ionic Compounds optional review: pages 96-97 in text: Q 15, 16, 17, 19, 20 review for a quiz on nomenclature of ionic compounds and acids (what we have done so far) at the beginning of our next class
5	Quiz: Nomenclature of Ionic Compounds and Acids (first 20 minutes) Note: Nomenclature of Binary Covalent Compounds • definition of binary covalent compounds • prefix system of naming	 complete Handout: Nomenclature #6: Binary Covalent Compounds optional practice sheet: Nomenclature #7: Final Practice work on Unit #4 Review: Chemical Nomenclature
6	Unit Test	Date:

aluminum		Al ³⁺	acetate	$(C_2H_3O_2^{-1})$	CH ₃ COO ¹⁻
ammonium		NH_{4}^{1+}	borate		BO ₃ ³⁻
antimony (III)	(antimonous)	Sb ³⁺	bromate		$\operatorname{BrO_3}^{1-}$
antimony (V)	(antimonic)	Sb ⁵⁺	bromide		Br^{1-}
arsenic (III)	(arsenous)	As ³⁺	bromite		$\operatorname{BrO_2}^{1-}$
arsenic (V)	(arsenic)	As ⁵⁺	carbide		C ⁴⁻
barium	(11 41 11 1)	Ba ²⁺	carbonate		CO ₃ ²⁻
bismuth (III)	(bismuthous)	Bi ³⁺	chlorate		CℓO ₃ ¹⁻
bismuth (v)	(bismuthic)	Bi ⁵⁺	chloride		Cℓ ¹⁻
cadmium	(0.000)	Cd ²⁺	chlorite		$C\ell O_2^{1-}$
calcium		Ca ²⁺	chromate		$\operatorname{CrO_4}^{2-}$
carbon		C ⁴⁺	cyanate		OCN ¹⁻
cesium		Cs ¹⁺	cyanide		CN ¹⁻
chromium (II)	(chromous)	Cr ²⁺	dichromate		$\operatorname{Cr}_2\operatorname{O}_7^{2-}$
chromium (III)	(chromic)	Cr ³⁺	dihydrogen phosphate		$H_2PO_4^{1-}$
cobalt (II)	(cobaltous)	Co ²⁺	fluoride		F^{1-}
cobalt (III)	(cobaltic)	C0 C0 ³⁺	hydrogen carbonate	(bicarbonate)	HCO ₃ ¹⁻
copper (I)	(codunc) (cuprous)	Cu ¹⁺	hydrogen phosphate	(bicarbonaie)	HPO_4^{2-}
		Cu ²⁺		(bigulfata)	HFO_4 HSO_4^{1-}
copper (II)	(cupric)	Au ¹⁺	hydrogen sulfate	(bisulfate)	HSO_4 HS^{1-}
gold (I)	(aurous)	Au Au ³⁺	hydrogen sulfide	(bisulfide)	
gold (III)	(auric)	Au H ¹⁺	hydrogen sulfite	(bisulfite)	HSO_{3}^{1-} H^{1-}
hydrogen		H H_3O^{1+}	hydride		H OH ¹⁻
hydronium			hydroxide		BrO ¹⁻
iron (II)	(ferrous)	Fe^{2+}	hypobromite		
iron (III)	(ferric)	$\frac{\text{Fe}^{3+}}{\text{Pb}^{2+}}$	hypochlorite		CℓO ¹⁻ IO ¹⁻
lead (II)	(plumbous)	Pb Pb ⁴⁺	hypoiodite		IO IO ₃ ¹⁻
lead (IV) lithium	(plumbic)	Pb Li ¹⁺	iodate iodide		IO_3 I^{1-}
magnesium		Mg ²⁺	iodite		$I = IO_2^{1-}$
manganese (II)	(manganous)	Mn ²⁺	nitrate		NO ₃ ¹⁻
manganese (IV)	(manganic)	Mn ⁴⁺	nitride		N ³⁻
manganese (IV) mercury (I)	(manganic) (mercurous)	Hg ¹⁺	nitrite		NO ₂ ¹⁻
mercury (II)	(mercurous)	Hg ²⁺	oxalate		$C_2 O_4^{2-}$
nickel (II)	(nickelous)	Ni ²⁺	oxide		O ²⁻
nickel (III)	(nickelic)	Ni ³⁺	perbromate		BrO ₄ ¹⁻
phosphorus (III)	(nickenc) (phosphorous)	P ³⁺	perchlorate		$C\ell O_4^{1-}$
· · ·		P P ⁵⁺	· ·		IO_4^{1-}
phosphorus (V)	(phosphoric)	P K ¹⁺	periodate		
potassium			permanganate		MnO_4^{1-}
silicon		Si ⁴⁺	phosphate		PO ₄ ³⁻
silver		Ag ¹⁺	phosphide		P ³⁻
sodium		Na^{1+}	phosphite		PO_3^{3-}
strontium		Sr^{2+}	sulfate		SO ₄ ²⁻
tin (II)	(stannous)	Sn ²⁺ Sn ⁴⁺	sulfide		S ²⁻
tin (IV)	(stannic)	Ti ³⁺	sulfite		SO_3^{2-}
titanium		Zn^{2+}	thiocyanate		SCN^{1-}
zinc		Zn	thiosulfate		$S_2O_3^{2-}$

Nomenclature #1: Binary Ionic Compounds

- barium oxide lithium sulfide magnesium bromide strontium iodide calcium sulfide hydrogen bromide lithium oxide potassium chloride silver sulfide cadmium fluoride zinc carbide potassium phosphide manganese (IV) sulfide cobalt (II) bromide manganese (II) carbide phosphorus (V) nitride nickel (III) phosphide gold (I) iodide iron (II) bromide copper (II) sulfide aluminum sulfide silicon iodide lead (IV) carbide aluminum fluoride mercury (I) phosphide arsenic (V) nitride cobalt (III) phosphide cesium nitride magnesium oxide phosphorus (III) chloride
- 1. Write the chemical formulas for the following binary ionic compounds:

2. Name the following binary compounds. Use the "Stock" system where necessary:

Li ₄ C	Ba ₃ N ₂
MgBr ₂	$A\ell_2O_3$
CaCℓ ₂	NaF
BaO	ZnBr ₂
Ag ₃ N	KI
SrS	Cd ₃ P ₂
BiH ₅	AgCℓ
AuBr ₃	CoO
Mn_3N_4	MnS ₂
FeF ₂	Pb ₂ C
$NiC\ell_2$	Sr ₃ P ₂
HgO	CuF
CoBr ₃	NiBr ₃
CrS	FeN
NiN	SiO ₂
SnO ₂	Sb ₂ S ₅
Au ₃ P	AsH ₃

Polyatomic Ionic Compounds

Re	call that "	poly" means	Polyat	omic ions a	re ions that a	are made of	
dif	ferent type	es of atoms che	mically bonded to	ogether. Th	ey often (bu	t not always) contain	
1		. C			• 41 44	•• ••	
1.	The mos		n of the polyator		$1 \text{ ven the "}_{2^{-}}$	ending:	•
	NO_3^{1-}		ion		SO_4	is the	10n
	PO_4^{3-}		ion		CO_3^{-1}	is the	10n
	$C\ell O_{3}^{1-}$		ion		10_3	is the	10n
	BO_{3}^{3-}	1s the	ion		CH ₃ COC	D ¹⁻ is the	10N
2.	If the io	n contains			than	the most common ("	") form.
	then it is	given the "	" ending:		•••••	···· ··· ··· ··· ··· ··· ··· ··· ··· ·) =====,
	$N()_{2}$	is the	10n		SO_{3}^{2}	is the	ion
	PO_{3}^{3-}	is the	ion		$C\ell O_2^{1-}$	is the	ion
	IO_2^{1}	is the	ion ion		$BO_2^{\overline{3}}$	is the	ion
	(the carb	onite ion,	, does not exis	t)	_		
_							
3.	If the ion	n contains			than	the "" ion, then	it is given the
	prefix "_	" wit	th the ""	ending:	$\mathbf{D} \mathbf{O}^{3-}$		
	SO_2^2	is the	ion		PO_2^{-5}	is the	ion
	ClO	1s the	ion		101	is the	10n
4.	If the io	n contains			than the	most common ("?	') form. then it
	is given	the prefix "	" with the '	"" en	ding	· · · · · · · · · · · · · · · · · · ·	, - ,
	$C\ell O_4^{1-}$	is the		ion	U		
	IO_4^{1-}	is the		ion			
	MnO_4^{1-}	is the		ion			
	mmary ex	.					
Cł	1-)				
Cł	O ¹⁻			Notice th	at all of thes	e ions have a valence (ch	arge) of 1–.
				The "ate/	ite" naming	system does not tell us th	ne charge of
	0^{1-}		>	the ion, it	tells only he	ow many oxygen atoms a	are present.
Cί	U ₃			The ions	that you nee	d to know are on your io	n chart, so
Cl	O ₄ ¹⁻			you can l	ook them up).	
			J		-		

The Rules for writing chemical formulas of compounds containing polyatomic ions:

Never change or "reduce" the chemical formula of a polyatomic ion.

eg. the oxalate ion, $C_2O_4^{2-}$ CANNOT be reduced to lower terms! The oxalate ion contains 2 carbon and 4 oxygen atoms covalently bonded together, that never changes!!

It may help to keep things straight if you write the chemical formula of polyatomic ion in brackets, and write its charge outside the brackets. You CANNOT change what is inside of the brackets!!

If, after you criss-cross the charges, the sub-script outside the brackets is one (1), you MUST remove the brackets. If the subscript is greater than one, the brackets MUST remain.

Nomenclature #2: Polyatomic Ionic Compounds

1. Name the following compounds (include Roman Numerals when necessary):			
Na ₂ SO ₄	A&PO ₄		
$A\ell \ (C\ell O_4)_3$	AsPO ₃		
Ni(OH) ₃	AgBrO ₃		
$Pb(IO_3)_2$	K ₃ P		
HgCN	Mg(IO ₄) ₂		
Cd(BrO) ₂	$Au_2S_2O_3$		
KSCN	Bi(IO ₂) ₃		
Co(BrO ₄) ₃	Si(NO ₃) ₄		
CuCH ₃ COO	NH ₄ CℓO ₃		
P(BrO ₂) ₃	NiBO ₃		
Fe(MnO ₄) ₂	SnCrO ₄		
$Cr_2(Cr_2O_7)_3$	Ba(CℓO) ₂		
$Pb(C\ell O_2)_4$	Pb(SO ₃) ₂		

2. Write the chemical formula for the following ionic compounds:

zinc carbonate	aluminum hypochlorite
calcium phosphate	cadmium phosphate
iron (III) sulfate	mercury (II) chlorite
potassium phosphite	magnesium hydroxide
iron (II) chlorate	cobalt (II) carbonate
tin (IV) nitrite	lithium thiocyanate
lead (IV) dichromate	silver sulfite
ammonium sulfite	arsenic (III) perbromate
nickel (III) acetate	nickel (II) chromate
antimony (V) cyanide	iron (II) carbide
mercury (I) permanganate	gold (III) hypoiodite
zinc chloride	copper (II) oxalate
manganese (II) thiosulfate	chromium (III) phosphide

Nomenclature #3: Practice Naming Binary and Oxy-acids

The Rules:

- if the name of the ion ends in "ide", name the acid ______
- if the name of the ion ends in "ate", change the "ate" suffix to ______
- if the name of the ion ends in "ite", change the "ite" suffix to ______

Name of Ion	Formula of Ion	Formula of Acid	Suffix on the Name of the Ion	Name of Acid
acetate				
borate				
bromate				
bromide				
bromite				
carbonate				
chlorate				
chloride				
chlorite				
chromate				
cyanide				
dichromate				
fluoride				
hypobromite				
hypochlorite				
hypoiodite				
iodide				
iodate				
oxalate				
perbromate				
perchlorate				
periodate				
permanganate				
phosphate				
phosphide				
phosphite				
sulfate				
sulfide				
sulfite				
thiocyanate				
thiosulfate				

Nomenclature #3: Naming Acids

1. Name the following binary acids. These acids contain only hydrogen and one other element. Their names are always "hydro______ic acid". ("Hydro" tells you it is a binary acid)

HI	HF
H ₃ P	HBr
HCℓ	H_2S

2. Name these oxyacids. If the acid contains the "ate" ion, then it becomes the "ic" acid. The "ite" ion, becomes the "ous" acid. Do not use "hydro" in these names. Hydro is only for binary acids.

HNO ₃	HIO
H ₃ PO ₄	H ₂ CO ₃
HClO ₂	HCH ₃ COO
HBrO ₄	H_2SO_3
HNO ₂	H ₃ PO ₃

3. Write the chemical formulas for these acids. Remember, "hydro" means it is a binary acid (no oxygen)

nitric acid	hydrobromic acid
nitrous acid	hypobromous acid
phosphoric acid	bromous acid
phosphorous acid	bromic acid
hydrophosphoric acid	perbromic acid
sulfuric acid	perchloric acid
sulfurous acid	chloric acid
hydrosulfuric acid	chlorous acid
carbonic acid	hypochlorous acid
hydroiodic acid	hydrochloric acid
hypoiodous acid	acetic acid
iodous acid	hydrofluoric acid
iodic acid	oxalic acid
periodic acid	chromic acid

4. Name the following acids. You may have to use the naming rules to figure some of them out.

HBr	H ₃ BO ₃
H ₂ SO ₃	HIO
HNO ₃	H ₂ CO ₃
H ₂ S	HClO ₄
$H_2Cr_2O_7$	HF
H ₂ SO ₄	HCH ₃ COO
ΗCℓ	H ₃ BO ₂

Nomenclature #4: Acids and Review

1. Name the following compounds. If they begin with hydrogen, name them as acids.		
Sb(NO ₂) ₃	HIO	
(NH ₄) ₂ CO ₃	LiCℓO ₄	
HCℓO ₂	HCH ₃ COO	
Au ₃ PO ₃	Cu ₃ BO ₃	
HNO ₂	H ₃ PO ₃	
MnO ₂	Fe(OH) ₃	
H ₂ SO ₃	$Hg_2C_2O_4$	
HIO ₂	H ₂ CO ₃	
H_2S	HCℓO ₄	
H ₃ PO ₄	HCN	
H ₃ P	$Co_2(Cr_2O_7)_3$	
НСℓ	HBrO ₂	
Mg ₃ N ₂	$Sn(S_2O_3)_2$	
HIO ₄	P(SCN) ₃	
H ₃ BO ₃	HF	

1. Name the following compounds. If they begin with hydrogen, name them as acids.

2. Write the chemical formulas for the following compounds. Remember, "hydro" means a binary acid.

nitric acid	hydrochloric acid
gold (III) thiocynate	chromic acid
bromic acid	potassium dichromate
phosphorous acid	cadmium borate
ammonium hydroxide	perbromic acid
chromium (III) chlorate	bismuth (V) phosphide
nickel (II) iodite	hydrobromic acid
hydrosulfuric acid	chlorous acid
carbonic acid	calcium hydroxide
iron (II) fluoride	lead (IV) cyanide
hypoiodous acid	acetic acid
arsenic (V) acetate	zinc carbonate
lead (II) oxalate	oxalic acid
periodic acid	antimony (III) thiosulfate
cesium carbide	ammonium perbromate

Nomenclature #5: Odds And Ends when Naming Ionic Compounds

sodium hypochlorite (bleach) mercury (II) periodate manganese (IV) oxide tin (IV) bromate potassium peroxide zinc peroxide chromium (II) sulfate chromium (III) hydrogen sulfate iron (III) acetate silver peroxide tin (IV) iodite lead (IV) hydrogen chromate lithium peroxide cobalt (II) perchlorate arsenic (V) thiosulfate gold (III) fluoride sodium peroxide calcium permanganate aluminum thiocyanate strontium cyanate copper (II) hydrogen carbonate lead (IV) hypoiodite silver dichromate iron (III) borate antimony (III) hydrogen sulfite ammonium cyanide mercury (II) acetate dihydrate silver hydrogen chromate tetrahydrate copper (II) sulfate pentahydrate copper (I) carbonate heptahydrate iron (III) dihydrogen phosphite nonahydrate

1. Write correct formulae for each of the following names:

2. Write the IUPAC names for the following compounds. Use Roman numerals when necessary.

Na ₂ O ₂	$Hg(C\ell O_4)_2$	
KNO ₂	Zn(OH) ₂	
CrSO ₄	Cr(HSO ₃) ₃	
Fe(CH ₃ COO) ₃	Li ₂ O ₂	
AuF ₃	Ca(HCrO ₄) ₂	
HgMnO ₄	NaOCN	
Pb(IO) ₂	Sn(H ₂ PO ₄) ₂	
CuHSO ₄	$A\ell_2(Cr_2O_7)_3$	
Ag ₂ HPO ₃	H ₂ O ₂	
NiPO ₄	Pb(HCO ₃) ₄	
$Co(IO_2)_2$	Sb ₃ (BO ₃) ₅	
$MnO_2 \cdot 4 H_2O$		
$CuNO_3 \cdot 6 H_2O$		
$NaCH_3COO \cdot 3 H_2O$		
$AuCN \cdot 8 H_2O$		

Nomenclature #6: Binary Covalent Compounds

- Ionic compounds are formed when ______ atoms bond with ______ atoms. They are named using the rules for naming ionic compounds that we have been learning up until now.
- Covalent (molecular) compounds are formed when two or more ______ atoms are bonded together. There is separate IUPAC system of naming that is used for *binary* covalent compounds, called the prefix system. It uses the same prefixes that we used to name hydrated compounds.

In the prefix system, the number of atoms of each element in the compound is indicated with a prefix. Because these rules are for binary compounds, the ending of the second element is changed to "ide". There are two additional rules:

1. If there is only one atom of the first element, then a prefix is not used for that element:

eg. CO₂ is ______ eg. NI₃ is ______

2. When the second element is oxygen and the prefix ends in an "o" or "a", then the "o" or "a" is omitted:

eg. CO is ______ P₂O₅ is ______ N₂O is ______ N₂O₄ is ______ Prefixes mono means di means tri means tetra means penta means hexa means hepta means octa means nona means deca means

1. Name the following covalent compounds using the prefix system:

	5
SO ₂	NF ₃
$CC\ell_4$	N ₂ H ₂
SO ₃	P ₂ H ₄
PF ₅	XeF ₆
SCl ₆	$NC\ell_3$
N_2S_4	BI ₃
PBr ₃	SF ₆
H ₂ O	SiO ₂
NO ₂	CS ₂
OF ₂	XeI ₄

2. Use the prefix system to write the chemical formulas for the following molecules:

dihydrogen monoxide	silicon dioxide
dinitrogen trioxide	carbon monoxide
sulfur dioxide	sulfur tetrafluoride
boron triiodide	chlorine dioxide
carbon tetrachloride	phosphorus pentachloride
iodine heptafluoride	xenon hexafluoride
boron tribromide	silicon tetraiodide
diphosphorus pentasulfide	disulfur dichloride

Nomenclature #7: Final Practice

copper (II) hydroxide pentahydrate cobalt (II) carbonate phosphorus trihydride nitrous acid gold (III) nitrite trihydrate tin (IV) thiosulfate nitric acid carbon monoxide phosphorus (V) chloride lead (IV) dichromate hydrosulfuric acid carbon disulfide mercury (I) hypobromite nickel (II) fluoride arsenic (III) oxide diphosphorus tetrafluoride liquid bromine bromic acid antimony (V) iodite nickel (III) hypochlorite sodium cyanide hydrophosphoric acid silver peroxide mercury (II) cyanate chloric acid tin (II) permanganate manganese (IV) hypobromite cesium fluoride arsenic (V) bromate arsenic (III) oxide silver thiocyanate phosphorous acid phosphoric acid hydrofluoric acid gold (I) oxalate phosphorus tetrachloride bismuth (III) iodite potassium peroxide nitrogen gas phosphorus (III) carbide antimony (V) hydroxide hypobromous acid cesium peroxide perchloric acid iodous acid iron (III) bromite lithium perchlorate carbonic acid iron (III) acetate sodium bicarbonate lead (IV) thiocyanate hydroiodic acid periodic acid bismuth (V) hydrogen phosphite dihydrogen monosulfide acetic acid cobalt (III) bromite lead (II) periodate copper (I) carbonate heptahydrate tin (IV) dichromate monohydrate iron (III) dihydrogen phosphite nonahydrate bismuth (V) bromate octahydrate lead (II) chromate tetrahydrate

1. Write the IUPAC formulas for each of the following compounds:

CoCO ₃	Sn(CrO ₄) ₂
PCℓ ₃	$Pb(Cr_2O_7)_2$
Ni ₂ (Cr ₂ O ₇) ₃	Sb(IO ₂) ₃
P ₂ O ₃	CS ₂
HgSO ₃	Fe(IO ₄) ₂
NH ₄ BrO	Li ₂ O ₂
As(BrO ₃) ₅	SnS ₂ O ₃
AuCłO	As ₂ O ₃
Bi(IO ₂) ₃	H ₃ PO ₃
HIO ₄	Mn(OH) ₄
CuHCO ₃	Na ₂ O ₂
Co(BrO ₂) ₃	Au ₃ BO ₃
Ni ₃ (PO ₃) ₂	HgBrO ₂
HgBr	Ba(CH ₃ COO) ₂
HCℓO	F ₂
KHSO ₄	Ca ₃ N ₂
Pb ₃ (PO ₃) ₄	MgHPO ₃
Zn(OH) ₂	SO ₂
Fe_2S_3 · 3 H ₂ O	HBrO ₂
NaH	$CC\ell_4$
Ca(CℓO) ₂	H ₂ O
H ₂ S	N ₂
H ₂ SO ₃	$Au_2C_2O_4$
BaO	SnF ₄
(NH ₄) ₃ P	HI
$PbCrO_4 \cdot 4 H_2O$	Bi(SCN) ₃
H ₂ SO ₄	H ₂ O ₂
H ₃ P	N ₂ O ₄
Ag ₂ O ₂	Si(OCN) ₄
HIO	HCH ₃ COO
$Cu(OH)_2 \cdot 5 H_2O$	
$Au(NO_2)_3 \cdot 3 H_2O$	
$Na_2Cr_2O_7 \cdot 6 H_2O$	
$Fe(H_2PO_3)_3 \cdot 9 H_2O$	
$A\ell_2(HPO_4)_3 \cdot 2 H_2O$	
$CuHCO_3 \cdot 7 H_2O$	

2. Write correct names for each of the following using the IUPAC method: