SCH 3UI Unit 7 Outline Stoichiometry

Lesson	Topics Covered	Handouts to Print	Homework Questions and Assignments
1	 Note: Stoichiometry definition the meaning of the coefficients in balanced chemical reactions mole – mole calculations 	Stoichiometry 1: Mole – Mole Problems	 complete handout: Stoichiometry 1: Mole – Mole Problems
2	 Note: Stoichiometry using Mass and Volume mole – mass calculations mole – volume calculations mass – volume calculations 	Stoichiometry II: Mass Problems Stoichiometry III: Volume of Gas Problems	 do (at least) questions 1, 2, 4 and 6 on handout: Stoichiometry II: Mass Problems do (at least) questions 1, 3 and 6 on handout: Stoichiometry III: Volume of Gas Problems
3	 Lab #7 prelab and begin Lab #7 theoretical yield and percentage yield 	Lab #7 (handed out in class)	 begin lab report for Lab #7 continue practicing stoichiometry problems from handouts
4	Note: "Harder" Stoichiometry Problems • example calculations	Stoichiometry IV: "Harder" Mass and Volume Problems	• complete handout: Stoichiometry IV: "Harder" Mass and Volume Problems
5	 Note: Limiting Factors definition and significance of limiting factor determining the limiting factor, sample calculations 	Stoichiometry V: Introduction to Limiting Factor Problems	• complete handout: Stoichiometry V: Introduction to Limiting Factor Problems
6	Note: Limiting Factors (cont) examples and practice	Stoichiometry VI: Limiting Factor Problems with Gases Stoichiometry: Final Review Problems	 do (at least) questions 4 and 5 on Stoichiometry VI: Limiting Factor Problems with Gases begin Unit 07 Review: Stoichiometry
7	Unit Test		

Stoichiometry I: Mole-Mole Problems

- 1. For the reaction: $Cu_{(s)} + 2 AgNO_{3(aq)} \rightarrow Cu(NO_{3})_{2(aq)} + 2 Ag_{(s)}$
- a) How many moles of silver are formed when 1 mole of copper is reacted?
- b) How many moles of copper (II) nitrate are formed if 4 moles of AgNO₃ are reacted?
- c) How many moles of copper are reacted when 10 moles of silver are formed?
- 2. For the reaction: 4 Fe $_{(s)}$ + 3 O_{2 (g)} \longrightarrow 2 Fe₂O_{3 (s)}</sub>
- a) How many moles of Fe are required to produce 6.0 moles of Fe_2O_3 ?
- b) How many moles of O_2 are used up when 1.0 mole of Fe_2O_3 is produced?
- c) How many moles of O_2 are needed to react with 3.00 moles of Fe?
- d) How many moles of Fe_2O_3 will form if 0.80 mole of iron are reacted?
- 3. For the reaction: $3 \operatorname{Cu}_{(s)} + 8 \operatorname{HNO}_{3(aq)} \longrightarrow 3 \operatorname{Cu}(\operatorname{NO}_{3})_{2(aq)} + 2 \operatorname{NO}_{(g)} + 4 \operatorname{H}_{2} \operatorname{O}_{(v)}$
- a) How many moles of NO are produced from 4.00 moles of copper metal reacting?
- b) How many moles of nitric acid are required to react completely with 2.00 moles of copper metal?
- c) How many moles of nitric acid are required to react if 2 moles of water are formed?

4. For the reaction: $C_3H_{8(l)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(v)}$

- a) How many moles of oxygen gas are required to react with 3.55 moles of C_3H_8 (1)?
- b) If 1.78 moles of CO_2 are formed, how many moles of C_3H_8 (1) were burned?
- c) How many moles of water are formed when 14.22 moles of oxygen gas react with C_3H_8 (l)?
- d) If 0.0034 moles of carbon dioxide are formed, how many moles of water vapour are also produced?

Answers:

- 1a) 2 mol Ag form
- b) $2 \mod Cu(NO_3)_2$ form
- c) 5 mol Cu react
- 2a) 12 mol Fe required
- b) $1.5 \mod O_2$ used up
- c) 2.25 mol of O_2 required
- d) $0.40 \text{ mol of } \text{Fe}_2\text{O}_3 \text{ will form}$

3a) 2.67 mol NO produced

- b) 5.33 mol HNO_3 reacted
- c) 4 mol HNO₃ required
- 4a) 17.75 moles O_2 required
- b) $0.593 \text{ moles } C_3H_8 \text{ burned}$
- c) 11.38 moles H₂O formed
- d) 0.0045 moles of H₂0 formed

Stoichiometry II: Mass Problems

1. How many grams of carbon dioxide are produced when 48.0 grams of carbon are burned?

 $C(s) + O_2(g) \longrightarrow CO_2(g)$

2. For the reaction 2 KClO₃ (s) 2 KCl (s) $3 O_2(g)$ + a) What mass of oxygen is formed by the reaction of 102 grams of $KCIO_3$? b) How many grams of KClO₃ must be used in order to produce 25 grams of KCl? 3. 6 $CO_2(g)$ + 6 $H_2O(v)$ $C_6H_{12}O_6$ (s) + $6 O_2 (g)$ a) What mass of water is needed to produce 50.0 g of $C_6H_{12}O_6$? b) How many grams of carbon dioxide are needed to react with 18.0 g of water? 4. For the reaction: $Cu(s) + 2 AgNO_3(aq)$ $Cu(NO_3)_2(aq) + 2 Ag(s)$ a) How many grams of copper can react with 10.0 g of silver nitrate? b) What mass of silver is formed when 5.0 g of copper react with silver nitrate? c) Calculate the mass of copper (II) nitrate produced by the reaction of 1.0 g of silver nitrate with copper. 5. For the reaction: Zn (s) 2 HCl (aq) $ZnCl_2$ (aq) $H_2(g)$ + + What mass of zinc chloride is produced by the reaction of 2.3 g of zinc? 6. For the reaction **Pb** (s) + **S** (s) PbS (s) a) How much sulfur can react with 1.0 g of lead?

b) If 1.00 g of lead and 3.00 g of sulfur are mixed and reacted, how much of the sulfur will not react? (Use your answer from part "a" to help determine your answer.)

Answers:			
1.	176 g of CO ₂		
2a)	$39.9510 \text{ g} = 40.0 \text{ g} \text{ of } \text{O}_2$		
2b)	41 g of KClO ₃		
3a)	30.0 g of water		
3b)	44.0 g of carbon dioxide		
4a)	1.87 g of copper		
4b)	17 g of silver		
4c)	0.55 g of copper (II) nitrate		
5.	4.8 g of zinc chloride		
6a)	0.15 g of sulfur		

6b) 2.85 g of sulfur will not react

Stoichiometry III: Volume of Gas Problems

1. For the reaction: 2 $NH_3(g) \longrightarrow 3 H_2(g) + N_2(g)$

What volume of nitrogen gas will be produced when 48.4 L of ammonia (NH₃) are broken down? (all gases are at STP)

2. For the reaction:

$3 \text{ Cu}(s) + 8 \text{ HNO}_3(aq) \longrightarrow 3 \text{ Cu}(\text{NO}_3)_2(aq) + 2 \text{ NO}(g) + 4 \text{ H}_2\text{O}(l)$

How many litres of NO gas at STP will be produced when 12.0 g of copper react with excess HNO₃?

- 3. For the reaction: $C_3H_8(g) + 5 O_2(g) \rightarrow 4 H_2O(v) + 3 CO_2(g)$
- a) What mass of water is produced if 60.0 L of propane gas (C_3H_8) at STP are reacted with excess oxygen?
- b) What volume of O_2 gas, at STP, is required to produce 250.0 g of CO_2 ?
- 4. For the reaction: $Mg(s) + 2 HCl(aq) \longrightarrow H_2(g) + MgCl_2(aq)$

What volume of H₂ gas will be produced when 200.0 g of Mg react with excess HCl?

5. For the reaction: $2 C_8 H_{18}$ (l) + $25 O_2$ (g) \longrightarrow 18 H₂O (v) + 16 CO₂ (g)

What volume of O_2 gas must be present at STP in order for 120.0 g of octane (C_8H_{18}) to completely react?

- 6. For the reaction: $XeF_6(s) + 3H_2O(l) \rightarrow XeO_3(g) + 6HF(g)$
- a) How many moles of water are needed to produce 20.0 L of XeO₃ at STP?
- b) How many litres of HF gas are formed by the reaction of 20.0 g XeF_6 with excess H₂O?
- 7. For the reaction:

 $3 \text{ Ag } (s) + 4 \text{ HNO}_3 (aq) \longrightarrow 3 \text{ AgNO}_3 (aq) + \text{ NO} (g) + 2 \text{ H}_2 \text{O} (l)$

What is the volume at STP of the NO (gas) produced when 5.0 g of silver are reacted?

- 1. $24.2 \text{ L of } N_2 \text{ produced}$
- 2. 2.82 L of NO produced
- 3a) 193 g of water produced
- 3b) $212 \text{ L} \text{ of } O_2 \text{ required}$
- 4. 184 L of H_2 produced
- 5. $294 \text{ L of } O_2 \text{ required}$
- 6a) 2.68 moles of \hat{H}_2O required
- 6b) 11.0 L of HF produced (3 sig digs, round up from 10.96 L)
- 7. 0.35 L of NO produced

Stoichiometry IV: "Harder" Mass and Volume Problems

1. Consider the combustion of octane with excess oxygen:

2 C_8H_{18} (l) + 25 $O_2(g)$ \rightarrow 16 $CO_2(g)$ + 18 $H_2O(v)$

- a) What volume of oxygen is needed to completely burn 100.0 g of octane?
- b) Given that air is 20.9 % oxygen, what volume of **air** is needed to completely burn 100.0 g of octane?
- 2. For the reaction $6 \text{ CO}_2(\mathbf{g}) + 6 \text{ H}_2 O(\mathbf{v}) \longrightarrow C_6 \text{H}_{12} O_6(\mathbf{s}) + 6 O_2(\mathbf{g})$
- a) What volume of carbon dioxide gas is needed to produce 250.0 g of $C_6H_{12}O_6$?
- b) Given that air is 0.035% carbon dioxide, what volume of air is required to supply this amount of carbon dioxide?
- 3. "X" is an unknown element that reacts with silver nitrate according to the equation:

$$XCl_2(s) + 2 AgNO_3(aq) \rightarrow 2 AgCl(s) + X(NO_3)_2(aq)$$

When 11.10 g of compound XCl_2 are reacted with excess silver nitrate, 28.66 g of silver chloride are produced.

- a) What is the molar mass of element "X"?
- b) What is the probable identity of element "X"?
- 4. "Y", an unknown non-metal, is displaced by phosphorus according to the following equation:
 - $6 \text{ CaY} (\text{aq}) + P_4 (\text{s}) \longrightarrow 6 \text{ Y} (\text{s}) + 2 \text{ Ca}_3 P_2 (\text{aq})$

When 97.40 g of compound CaY are reacted with excess phosphorus, 81.98 g of calcium phosphide are formed.

- a) What is the molar mass of element "Y"?
- b) What is the probable identity of element "Y"?
- 5. X is an unknown element. For the reaction:

 $4 XH_3 + 7 O_2(g) \longrightarrow 4 XO_2 + 6 H_2O(l)$

When 50.0 g of XH_3 are reacted, 79.3 g of water are produced. What is the molar mass and probable identity of X?

Answers:

- 1a) 245 L of O_2
- 1b) $1.17 \times 10^3 \text{ L of air}$
- 2a) 186 L of CO_2
- 2b) 5.3×10^5 L of air (2 sig digs)
- 3a) MM of XCl_2 is 111.02 g/mol, MM of X is 40.1 g/mol
- 3b) X is probably calcium
- 4a) MM of CaY is 72.15 g/mol, MM of Y is 32.07 g/mol
- 4b) Y is probably sulfur
- 5) MM of XH₃ is 17.04 g/mol, MM of X is 14.01 g/mol X is probably nitrogen, N

Stoichiometry V: Introduction to Limiting Factor Problems

1. For the reaction: 2 Mg (s) + $O_2(g) \rightarrow 2$ MgO (s)

Which element is the limiting factor when 3.00 g of magnesium are reacted with 2.20 g of oxygen gas? What mass of magnesium oxide is formed?

2. For the reaction: 2 Al (s) + 3 S (s) \rightarrow Al₂S₃ (s)

If 10.0 g of sulfur and 5.00 g of aluminum are reacted, which element will determine the amount of aluminum sulfide that is produced? What mass of aluminum sulfide is formed?

3. For the reaction: $3 \text{ Zn}(s) + 2 \text{ MoO}_3(aq) \longrightarrow \text{Mo}_2O_3(aq) + 3 \text{ ZnO}(s)$

What mass of ZnO is formed when 20.0 g of molybdenum (VI) oxide are reacted with 10.0 g zinc?

4. When 13.7 g of bismuth metal and 9.11 g of chlorine gas are combined in a reaction vessel, a synthesis reaction occurs. What mass of bismuth (III) chloride is formed?

Answers:

- 1. Magnesium is the limiting factor: 4.97 g of MgO will form.
- 2. Al is the limiting factor, so the amount of Al will determine how much Al_2S_3 is produced. The mass of Al_2S_3 produced is 13.9 g.
- 3. Zn is the limiting factor: 12.4 g of ZnO are produced.
- 4. The reaction is 2 Bi (s) + 3 $Cl_2(g) \rightarrow 2 BiCl_3(s)$. Bismuth is the limiting factor: 20.7 g of BiCl₃(s) is produced.

Stoichiometry Questions VI: Limiting Factor Problems with Gases

1. For the reaction: $2 \operatorname{Na}(s) + \operatorname{Cl}_2(g) \longrightarrow 2 \operatorname{NaCl}(s)$

What mass of NaCl is formed when 0.948 L of chlorine gas react with 2.0 g of sodium?

2. Pentane, a fuel, reacts with oxygen to form carbon dioxide and water according to the equation:

 $C_5H_{12}(l) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(v)$

How many litres of CO₂ will form when 60.0 g of pentane react with 300.0 L of O₂ gas at STP?

3. For the reaction: $CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$

How many grams of sulfur dioxide will form when 63.0 L of carbon disulfide react with 142.0 L of oxygen gas, at STP?

4. For the reaction of boron nitride and fluorine gas, what volume of boron trifluoride will form when 24.0 g of BN react with 22.0 L of F_2 ?

2 BN (g) + 3 F₂ (g) \longrightarrow 2 BF₃ (g) + N₂ (g)

5. An unknown element "X" completely reacts with exactly 24.73 L of oxygen gas, at STP, to form 75.04 g of X_2O_3 according to the equation:

 $4 X (s) + 3 O_2 (g) \rightarrow 2 X_2 O_3 (s)$

What is the molar mass of X? What is its likely identity?

Answers:

- 1. Sodium is in excess, chlorine gas is the limiting factor. 4.95 g of sodium chloride is produced.
- 2. Oxygen is in excess, pentane is the limiting factor. 93.1 L of CO₂ will form.
- 3. CS_2 is in excess, oxygen is the limiting factor. 271 g of SO₂ will form.
- 4. BN is in excess, fluorine is the limiting factor. 14.7 L of BF₃ gas will form.
- 5. Molar mass of X is 26.98 g/mole. (27.0 g/mol, with sig digs). X is likely aluminum.