Unit 07 Stoichiometry I: Mole-Mole Problems, Answers

1. For the reaction: $\mathbf{C u}{ }_{(\mathrm{s})}+2 \mathrm{AgNO}_{3(\mathrm{aq})} \longrightarrow \mathbf{C u}\left(\mathbf{N O}_{3}\right)_{2(\mathrm{aq})}+2 \mathbf{A g}_{(\mathrm{s})}$
a) How many moles of silver are formed when 1 mole of copper is reacted?

$$
1 \mathrm{~mol} \mathrm{Cu} \times \frac{2 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Cu}}=2 \mathrm{~mol} \mathrm{Ag} \text { are formed }
$$

b) How many moles of copper (II) nitrate are formed if 4 moles of AgNO_{3} are reacted?

$$
4 \mathrm{~mol}_{\mathrm{AgNO}}^{3} \text { } \times \frac{1 \mathrm{~mol} \mathrm{Cu}^{2}\left(\mathrm{NO}_{3}\right)_{2}}{2 \mathrm{~mol} \mathrm{AgNO}_{3}}=2 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \text { are formed }
$$

c) How many moles of copper are reacted when 10 moles of silver are formed?

$$
10 \mathrm{~mol} \mathrm{Ag} \times \frac{1 \mathrm{~mol} \mathrm{Cu}}{2 \mathrm{~mol} \mathrm{Ag}}=5 \mathrm{~mol} \mathrm{Cu} \text { are reacted }
$$

2. For the reaction: $\quad \mathbf{4 F e}(\mathrm{s}) \quad+\mathbf{3 \mathbf { O } _ { 2 (\mathrm { g }) }} \longrightarrow \mathbf{2 ~ F e} \mathbf{2}_{\mathbf{2}} \mathbf{O}_{(\mathrm{s})}$
a) How many moles of Fe are required to produce 6.0 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
$6.0 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{x} \frac{4 \mathrm{~mol} \mathrm{Fe}}{2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}=12 \mathrm{~mol} \mathrm{Fe}$ are required
b) How many moles of O_{2} are used up when 1.0 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is produced?

$$
1.0 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Fe}_{2}}-1.5 \mathrm{O}_{3} \quad=1 \mathrm{~mol}_{2} \text { are used up }
$$

c) How many moles of O_{2} are needed to react with 3.00 moles of Fe ?

$$
3.00 \mathrm{~mol} \mathrm{Fe} x \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{Fe}}=2.25 \mathrm{~mol} \mathrm{O}_{2} \text { are needed }
$$

d) How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will form if 0.80 mole of iron are reacted?

$$
0.80 \mathrm{~mol} \mathrm{Fe} \mathrm{x} \frac{2 \mathrm{~mol} \mathrm{Fe}_{2} \underline{\mathrm{O}}_{3}-}{4 \mathrm{~mol} \mathrm{Fe}^{2}}=0.40 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \text { will form }
$$

3. For the reaction: $\mathbf{3 C u}{ }_{(\mathrm{s})}+\mathbf{8} \mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathbf{3 C u}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NO}_{(\mathrm{g})}+\mathbf{4 H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{v})}$
a) How many moles of NO are produced from 4.00 moles of copper metal reacting?

$$
4.00 \mathrm{~mol} \mathrm{Cu} x \frac{2 \mathrm{~mol} \mathrm{NO}}{3 \mathrm{~mol} \mathrm{Cu}}=2.67 \mathrm{~mol} \mathrm{NO} \text { will be produced }
$$

b) How many moles of nitric acid are required to react completely with 2.00 moles of copper metal?

$$
2.00 \mathrm{~mol} \mathrm{Cu}^{\mathrm{m}} \frac{8 \mathrm{~mol} \mathrm{HNO}_{3}}{3 \mathrm{~mol} \mathrm{Cu}_{-}}=5.33 \mathrm{~mol} \mathrm{HNO}_{3} \text { are required }
$$

Unit 07 Stoichiometry I: Mole-Mole Problems, Answers (cont.)

3. For the reaction: $\mathbf{3 ~ C u}(\mathrm{s})+\mathbf{8} \mathbf{H N O}_{3(\mathrm{aq})} \longrightarrow \mathbf{3 C u}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathbf{2} \mathrm{NO}_{(\mathrm{g})}+\mathbf{4} \mathbf{H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{v})}$
c) How many moles of nitric acid are required to react if 2 moles of water are formed?
$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{8 \mathrm{~mol} \mathrm{HNO}_{3}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=4 \mathrm{~mol} \mathrm{HNO}_{3}$ are required
4. For the reaction: $\mathbf{C}_{\mathbf{3}} \mathrm{H}_{\mathbf{8}(\mathrm{l})}+\mathbf{5} \mathrm{O}_{\mathbf{2}(\mathrm{g})} \longrightarrow \mathbf{3} \mathrm{CO}_{2(\mathrm{~g})}+\mathbf{4 \mathbf { H } _ { 2 } \mathrm { O }}{ }_{(\mathrm{v})}$
a) How many moles of oxygen gas are required to react with 3.55 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ (1)?

$$
3.55 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{5 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=17.75 \mathrm{~mol} \mathrm{O}_{2} \text { are required (rounds to } 17.8 \mathrm{~mol} \mathrm{O}_{2} \text {) }
$$

b) If 1.78 moles of CO_{2} are formed, how many moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ (l) were burned?

$$
1.78 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} \underline{\mathrm{H}}_{8}-}{3 \mathrm{~mol} \mathrm{CO}_{2}}=0.593 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \text { were burned }
$$

c) How many moles of water are formed when 14.22 moles of oxygen gas react with $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{l})$?

$$
14.22 \mathrm{~mol} \mathrm{O}_{2} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{~mol} \mathrm{O}_{2}}=11.38 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { are formed }
$$

d) If 0.0034 moles of carbon dioxide are formed, how many moles of water vapour are also produced?

$$
0.0034 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{3 \mathrm{~mol} \mathrm{CO}_{2}}=0.0045 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { are also produced (or } 4.5 \times 10^{-2} \mathrm{~mol} \text {) }
$$

Stoichiometry II: Mass Problems, Answers

1. How many grams of carbon dioxide are produced when 48.0 grams of carbon are burned?

$$
\mathrm{C}(\mathrm{~s}) \quad+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

Molar masses: $\quad 12.01 \mathrm{~g} / \mathrm{mol} \quad 44.01 \mathrm{~g} / \mathrm{mol}$
$48.0 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol}}{12.01 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}-}{1 \mathrm{~mol} \mathrm{C}^{-}} \times \frac{44.01 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=176 \mathrm{~g}$ of CO_{2} are produced
2. For the reaction $2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}(\mathrm{s})+\mathbf{3} \mathbf{O}_{2}(\mathrm{~g})$

Molar masses: $\quad 122.55 \mathrm{~g} / \mathrm{mol} \quad 74.55 \mathrm{~g} / \mathrm{mol} \quad 32.00 \mathrm{~g} / \mathrm{mol}$
a) What mass of oxygen is formed by the reaction of 102 grams of KClO_{3} ?
$102 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{1 \mathrm{~mol}}{122.55 \mathrm{~g}} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{KC} \mathrm{\ell O}_{3}}=\frac{32.00 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{O}_{2}}=\underset{\text { (rounds to } 40.0 \mathrm{~g} \mathrm{O}_{2} \text {) }}{39.95 \mathrm{~g} \mathrm{of}_{2} \text { is formed }}$
b) How many grams of KClO_{3} must be used in order to produce 25 grams of $\mathrm{KC} \mathrm{\ell}$?
$25 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol}}{74.55 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{KClO}_{3}}{2 \mathrm{~mol} \mathrm{KCl}^{-}} \quad \mathrm{x} \frac{122.55 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{KClO}_{3}} \quad=41 \mathrm{~g}$ of KClO 33 needed
3. $\quad 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{v}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})$

MM: $\quad 44.01 \mathrm{~g} / \mathrm{mol} \quad 18.02 \mathrm{~g} / \mathrm{mol} \quad 180.18 \mathrm{~g} / \mathrm{mol} \quad 32.00 \mathrm{~g} / \mathrm{mol}$
a) What mass of water is needed to produce 50.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
$50.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{x} \frac{1 \mathrm{~mol}}{180.18 \mathrm{~g}} \quad \mathrm{x} \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \quad \mathrm{x} \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \quad=30.0 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$
b) How many grams of carbon dioxide are needed to react with 18.0 g of water?
$18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{x} \frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}} \times \frac{6 \mathrm{~mol} \mathrm{CO}_{2}-}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}^{-}} \quad \mathrm{x} \frac{44.01 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{CO}_{2}} \quad=43.96 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$ (rounds to 44.0 g)

Stoichiometry II: Mass Problems, Answers (cont.)

4. For the reaction: $\mathbf{C u}(\mathbf{s})+2 \mathbf{A g N O}_{3}(\mathrm{aq}) \longrightarrow \mathbf{C u}\left(\mathbf{N O}_{3}\right)_{2}(\mathbf{a q})+2 \mathbf{A g}(\mathrm{~s})$
$\begin{array}{lll}\text { Molar masses: } & 63.55 \mathrm{~g} / \mathrm{mol} \quad 169.88 \mathrm{~g} / \mathrm{mol} \quad 187.57 \mathrm{~g} / \mathrm{mol} \quad 107.87 \mathrm{~g} / \mathrm{mol}\end{array}$
a) How many grams of copper can react with 10.0 g of silver nitrate?
$10.0 \mathrm{~g} \mathrm{AgNO}_{3} \mathrm{x} \frac{1 \mathrm{~mol}}{169.88 \mathrm{~g}} \quad \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{Cu}^{2 \mathrm{~mol} \mathrm{AgNO}_{3}}}{\mathrm{x}} \frac{63.55 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Cu}} \quad=1.87 \mathrm{~g}$ of Cu can react
b) What mass of silver is formed when 5.0 g of copper react with silver nitrate?
$5.0 \mathrm{~g} \mathrm{Cu} \times \frac{1 \mathrm{~mol}}{63.55 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Cu}} \quad \mathrm{x} \frac{107.87 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Ag}} \quad=17 \mathrm{~g}$ of Ag formed
c) Calculate the mass of copper (II) nitrate produced by the reaction of 1.0 g of silver nitrate with copper.
$\left.1.0 \mathrm{~g} \mathrm{AgNO}_{3} \mathrm{x} \frac{1 \mathrm{~mol}}{169.88 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{Cu}^{\left(\mathrm{NO}_{3}\right)_{2}}}{2 \mathrm{~mol} \mathrm{AgNO}_{3}} \quad \mathrm{x} \frac{187.57 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}} \quad=0.55 \mathrm{~g} \mathrm{of} \mathrm{Cu(NO}_{3}\right)_{2}$ produced
5. For the reaction: $\mathbf{Z n}(\mathrm{s})+\mathbf{2 H C l}(\mathbf{a q}) \longrightarrow \mathbf{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{Z n C l}_{\mathbf{2}}(\mathbf{a q})$

Molar masses: $\quad 65.41 \mathrm{~g} / \mathrm{mol}$
$136.31 \mathrm{~g} / \mathrm{mol}$
What mass of zinc chloride is produced by the reaction of 2.3 g of zinc?
$2.3 \mathrm{~g} \mathrm{Zn} \mathrm{x} \frac{1 \mathrm{~mol}}{65.41 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{ZnCl}_{2}}{1 \mathrm{~mol} \mathrm{Zn}} \quad \mathrm{x} \frac{136.31 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{ZnCl}_{2}} \quad=4.8 \mathrm{~g}$ of ZnCl_{2} produced
6. For the reaction $\mathbf{P b}(\mathbf{s})+\mathbf{S}(\mathbf{s}) \longrightarrow \mathbf{P b S}(\mathbf{s})$

Molar masses: $\quad 207.2 \mathrm{~g} / \mathrm{mol} \quad 32.07 \mathrm{~g} / \mathrm{mol}$
a) How much sulfur can react with 1.0 g of lead?
$1.0 \mathrm{~g} \mathrm{~Pb} \times \frac{1 \mathrm{~mol}}{207.2 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~Pb}} \times \frac{32.07 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{~S}}=\underset{\text { can react }}{0.15 \mathrm{~g} \text { of } \mathrm{S}}$
b) If 1.00 g of lead and 3.00 g of sulfur are mixed and reacted, how much of the sulfur will not react? (Use your answer from part "a" to help determine your answer.)

If you have 3.00 grams of sulfur, but only 0.15 g react (Part a), then there will be $(3.00 \mathrm{~g}-0.15 \mathrm{~g})=2.85 \mathrm{~g}$ of sulfur still remaining.

Answers:

1. $\quad 176 \mathrm{~g}$ of CO_{2}

2a) $39.9510 \mathrm{~g}=40.0 \mathrm{~g}$ of O_{2}
2b) 41 g of KClO_{3}
3a) 30.0 g of water
3b) 44.0 g of carbon dioxide
4a) 1.87 g of copper
4b) $\quad 17 \mathrm{~g}$ of silver
4c) $\quad 0.55 \mathrm{~g}$ of copper (II) nitrate
5. 4.8 g of zinc chloride

6a) $\quad 0.15 \mathrm{~g}$ of sulfur
6b) 2.85 g of sulfur will not react

Stoichiometry III: Volume of Gas Problems, Answers

1. For the reaction: $\quad \mathbf{2} \mathbf{N H}_{3}(\mathrm{~g}) \longrightarrow \mathbf{3} \mathbf{H}_{2}(\mathrm{~g})+\quad \mathbf{N}_{2}(\mathrm{~g})$

What volume of nitrogen gas will be produced when 48.4 L of ammonia $\left(\mathrm{NH}_{3}\right)$ are broken down? (all gases are at STP)
$48.4 \mathrm{~L} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}} \times \frac{1 \mathrm{molN}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}} \quad \mathrm{x} \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=24.2 \mathrm{~L}$ of N_{2} gas produced
2. For the reaction:

$$
3 \mathrm{Cu}(\mathrm{~s})+8 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NO}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

How many litres of NO gas at STP will be produced when 12.0 g of copper react with excess HNO_{3} ?
$12.0 \mathrm{~g} \mathrm{Cu} \times \frac{1 \mathrm{~mol}}{63.55 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{NO}}{3 \mathrm{~mol} \mathrm{Cu}} \quad \mathrm{x} \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol} \mathrm{NO}} \quad=2.82 \mathrm{~L}$ NO gas produced
3. For the reaction: $\quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{v})+3 \mathrm{CO}_{2}(\mathrm{~g})$

Molar masses:
$18.02 \mathrm{~g} / \mathrm{mol} \quad 44.01 \mathrm{~g} / \mathrm{mol}$
a) What mass of water is produced if 60.0 L of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ at STP are reacted with excess oxygen?
$60.0 \mathrm{~L} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}} \quad \mathrm{x} \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=193 \mathrm{~g}$ of H $\mathrm{H}_{2} \mathrm{O}$ produced
b) What volume of O_{2} gas, at STP , is required to produce 250.0 g of CO_{2} ?
$250.0 \mathrm{~g} \mathrm{CO}_{2} \mathrm{x} \frac{1 \mathrm{~mol}}{44.01 \mathrm{~g}} \times \frac{5 \mathrm{~mol} \mathrm{O}_{2}}{3 \mathrm{~mol} \mathrm{CO}_{2}} \quad \mathrm{x} \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol} \mathrm{O}_{2}} \quad=212 \mathrm{~L} \mathrm{O}_{2}$ gas required
4. For the reaction: $\mathbf{M g}(\mathbf{s})+\mathbf{2} \mathbf{H C l}(\mathbf{a q}) \longrightarrow \quad \mathbf{H}_{2}(\mathrm{~g}) \quad+\quad \mathbf{M g C l}_{\mathbf{2}}(\mathbf{a q})$ What volume of H_{2} gas will be produced when 200.0 g of Mg react with excess HCl ?
$200.0 \mathrm{~g} \mathrm{Mg} \mathrm{x} \frac{1 \mathrm{~mol}}{24.31 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Mg}} \quad \mathrm{x} \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol} \mathrm{H}_{2}} \quad=184 \mathrm{~L} \mathrm{H}_{2}$ gas produced
5. For the reaction: $2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 18 \mathrm{H}_{2} \mathrm{O}(\mathrm{v})+16 \mathrm{CO}_{2}(\mathrm{~g})$

Molar masses: $\quad 114.26 \mathrm{~g} / \mathrm{mol}$
What volume of O_{2} gas must be present at STP in order for 120.0 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ to react?

$$
120.0 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \quad \mathrm{x} \frac{1 \mathrm{~mol}}{114.26 \mathrm{~g}} \quad \mathrm{x} \frac{25 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}} \quad \mathrm{x} \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol} \mathrm{O}_{2}} \quad=294 \mathrm{~L} \mathrm{O}_{2} \text { gas required }
$$

Stoichiometry III: Volume of Gas Problems, Answers (cont.)

6. For the reaction: $\mathrm{XeF}_{6}(\mathrm{~s})+\mathbf{3 H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{XeO}_{3}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{g})$

Molar masses: $\quad 245.29 \mathrm{~g} / \mathrm{mol}$

20.0 $\mathrm{L} \mathrm{XeO}_{3} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{Ool} \mathrm{XeO}_{3}}=2.68$ moles $\mathrm{H}_{2} \mathrm{O}$ required (**asked for moles)
b) How many litres of HF gas are formed by the reaction of $20.0 \mathrm{~g} \mathrm{XeF}_{6}$ with excess $\mathrm{H}_{2} \mathrm{O}$?

$$
20.0 \mathrm{~g} \mathrm{XeF}_{6} \times \frac{1 \mathrm{~mol}}{245.29 \mathrm{~g}} \times \frac{6 \mathrm{~mol} \mathrm{HF}}{1 \mathrm{~mol} \mathrm{XeF}_{6}} \quad \mathrm{x} \quad \underline{22.4 \mathrm{~L}} 1 \mathrm{~mol} \quad=\begin{aligned}
& \text { 10.958 L HF formed } \\
& \text { (rounds to 11.0 L HF) }
\end{aligned}
$$

7. For the reaction:

$$
3 \mathrm{Ag}(\mathrm{~s})+4 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow 3 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What is the volume at STP of the NO (gas) produced when 5.0 g of silver are reacted?
$5.0 \mathrm{~g} \mathrm{Ag} \times \frac{1 \mathrm{~mol}}{107.87 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{NO}}{3 \mathrm{~mol} \mathrm{Ag}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=0.35 \mathrm{~L} \mathrm{NO}$ formed

$$
\begin{aligned}
& \text { Answers: } \\
& \text { 1. } \quad 24.2 \mathrm{~L} \text { of } \mathrm{N}_{2} \text { produced } \\
& \text { 2. } \\
& 3.82 \mathrm{~L} \text { of NO produced } \\
& 3 \mathrm{a}) \\
& 193 \mathrm{~g} \text { of water produced } \\
& \text { 3b) } \\
& 212 \mathrm{~L} \text { of } \mathrm{O}_{2} \text { required } \\
& \text { 4. } \\
& 184 \mathrm{~L} \text { of } \mathrm{H}_{2} \text { produced } \\
& \text { 5. } \\
& \text { 294 } \text { of } \mathrm{O}_{2} \text { required } \\
& \text { 6a) } \\
& 2.68 \text { moles of } \mathrm{H}_{2} \mathrm{O} \text { required } \\
& \text { 6b) } \\
& \text { 11.0 L of } \mathrm{HF} \text { produced (} 3 \text { sig digs, round up from } 10.96 \mathrm{~L} \text {) } \\
& \text { 7. } \\
& 0.35 \mathrm{~L} \text { of } \mathrm{NO} \text { produced }
\end{aligned}
$$

