Review for Unit Test: Stoichiometry

1. What is meant by the "limiting factor"? Explain why the limiting factor is important.
2. For the reaction: $\mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{NaCl}(\mathrm{aq})$
a) How many moles of sodium hydroxide are needed in order to form 8.43 moles of aluminum hydroxide?
b) What mass of sodium hydroxide is required to react with 50.7 g of aluminum chloride?
3. For the reaction: $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
a) What volume of pure oxygen gas at STP is required to react with 1.5 g of pure iron?
b) Air is 20.9% oxygen. What volume of air is required to react with 1.5 g of pure iron?
4. For the reaction: $\quad \mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{SiF}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$ (v) What volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{v})$ is produced when 35.0 g of SiO_{2} react with 63.0 L of HF gas? Assume that all gases and vapours are at STP.
5. An unknown element " X " reacts according to the following chemical equation:

$$
2 \mathrm{X}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \rightarrow \quad 2 \mathrm{XOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

When 22.76 g of " X " reacts, 1.000 g of hydrogen gas is produced (at STP). What is the molar mass and probable identity of the element " X " ?
6. Plants produce sugar by photosynthesis using the reaction:

$$
6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})
$$

a) How many litres of pure carbon dioxide are required by a green plant in order to produce 450.0 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (s) ?
b) How many litres of air are needed to supply the required CO_{2} in part (a), assuming that air is 0.0400% carbon dioxide by volume?
7. For the reaction: $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{s}) \rightarrow 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$ What volume of carbon dioxide will be formed when 50.0 g of iron (III) oxide react with 2.50 g of pure carbon?
8. An unknown element " Q " reacts according to the following chemical equation:

$$
\mathrm{XeQ}_{6}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \rightarrow \quad \mathrm{XeO}_{3}(\mathrm{aq})+6 \mathrm{HQ}(\mathrm{~g})
$$

When XeQ_{6} reacts with exactly 13.80 g of water, 30.65 g of $\mathrm{HQ}(\mathrm{g})$ are formed. What is the molar mass and likely identity of "Q"?
9. For the reaction: $\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})$
a) If 7.50 grams of P_{4} are reacted with excess O_{2}, how many grams of $\mathrm{P}_{2} \mathrm{O}_{5}$ may be produced? That is, what is the theoretical yield of $\mathrm{P}_{2} \mathrm{O}_{5}$?
b) If 13.6 g of $\mathrm{P}_{2} \mathrm{O}_{5}$ are actually produced, what is the percentage yield of $\mathrm{P}_{2} \mathrm{O}_{5}$?
10. One way to remove carbon dioxide from the air is to react it with lithium hydroxide, according to the reaction: $\quad \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{LiOH}(\mathrm{s}) \rightarrow \quad \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a) When 20.00 g of lithium hydroxide are reacted with carbon dioxide gas, what mass of lithium carbonate may be produced?
b) If the actual mass of lithium carbonate that is produced is 29.40 g , calculate the percentage yield for this reaction.

```
Answers:
2a) 25.3 mol NaOH b) 45.6 g
3a) }0.45\textrm{L}\mathrm{ of }\mp@subsup{\textrm{O}}{2}{
    b) 2.2 L of air
4) }\mp@subsup{\textrm{SiO}}{2}{}\mathrm{ is the limiting factor. 26.1 L of H2O}\mathrm{ is produced.
5) MM
6a) 336 L of CO O
7) }\textrm{C}\mathrm{ is limiting factor. }4.66\textrm{L}\mathrm{ of }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ will form.
8) }\mp@subsup{\textrm{MM}}{\textrm{Q}}{}\mathrm{ is }19.00\textrm{g}/\textrm{mol}\mathrm{ . " }\textrm{X}\mathrm{ " is probably fluorine.
9a) }17.2\textrm{g}\mathrm{ of }\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{O}}{5}{
    b) }79.1%\mathrm{ yield
10a) }30.85\textrm{g}\mathrm{ of Li2}\mp@subsup{\textrm{CO}}{3}{}\quad\mathrm{ b) }95.30%\mathrm{ yield
```

