SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws

Lesson	Topics Covered	Handouts to Print	Homework Questions and Assignments
1	Note: The States of Matter - solids, liquids and gases - state and the polarity of molecules - the Kinetic Molecular Theory of Matter (KMT) - types of molecular motion	The States of Matter Characteristics of Solids, Liquids and Gases	- Complete handout: Characteristics of Solids, Liquids and Gases - know the names of the changes of state
2	Note: Temperature and the State of Matter - definition of temperature - the Kelvin temperature scale - comparing the potential and kinetic energy of substances - energy changes during changes of state Note: Pressure and the State of Matter - definition of pressure - common units for pressure - conversions between pressure units	Temperature and the State of Matter Understanding Temperature, Pressure and the State of Matter A Heating Curve for Pure Water	- Complete handout: Understanding Temperature, Pressure and the State of Matter - Complete just the graphing portion of the handout: A Heating Curve for Pure Water. Bring the completed graph to our next class - visualize and UNDERSTAND what is happening to the particles when they are being heated or cooled and changing state
3	Heating Curves - complete handout: A Heating Curve for Pure Water - review the changes in kinetic and potential energy during heating and cooling The KMT Applied to Gases - five points of the KMT for Gases - characteristics of an "Ideal Gas"	Interpreting Energy Changes during Heating, Cooling and Changes of State The Kinetic Molecular Theory Applied to Gases	- understand the changes in kinetic and potential energy in the different regions of heating/cooling curves - read, UNDERSTAND and answer the questions on handout: The Kinetic Molecular Theory Applied to Gases
4	Note: The Gas Laws: Charles' Law - the relationship between volume and temperature of a gas: graphically and mathematically - introduction to proportionality statements - derive Charles' Law mathematically - using Charles' Law	Charles' Law Practice Questions	- Charles' Law Practice Questions
5	Note: The Gas Laws: Boyle's Law - the relationship between volume and pressure of a gas: graphically and mathematically - derive Boyle's Law mathematically - using Boyle's Law	Boyle's Law Practice Questions	- Boyle's Law Practice Questions

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws (continued)

6	Note: Gay-Lussac's Law - the relationship between temperature and pressure of a gas: graphically and mathematically - proportionality statements - derive Gay-Lussac's Law mathematically - using Gay-Lussac's Law	Gay-Lussac's Law Practice Questions	- Gay-Lussac's Law Questions - Moles of Gas (n) Practice Questions
7	Modelling the Behaviour of Gases (computer simulation lab)	Simulation Lab: The Behaviour of Gases (handed out in class)	- Perform the Simulation Lab: The Behaviour of Gases - Complete the Graphing Analysis, Questions and Conclusions
8	Note: The Combined Gas Law - derive the Combined Gas Law - calculations using the Combined Gas Law	The Combined Gas Law Practice Questions	- The Combined Gas Law Practice Questions
9	Note: The Ideal Gas Law - calculating the Ideal Gas Law constant, R - values for R using different pressure units - calculations using the Ideal Gas Law	Ideal Gas Law Practice Questions	- Ideal Gas Law Practice Questions - begin Unit 8 Review: KMT, States of Matter and Gas Laws
10	Lab \#8 - Dalton's Law of Partial Pressures - prelab and lab	Lab \#8 handed out in class	- begin lab report for lab \#8 - complete Unit 8 Review: KMT, States of Matter and Gas Laws (in manual)
11	Unit Test: KMT and the Gas Laws		

The States of Matter

The state of a substance at SATP (and \qquad) is a \qquad of that substance. For example, at SATP, H_{2} is always a \qquad , $\mathrm{H}_{2} \mathrm{O}$ is always a \qquad and NaCl is always a \qquad .

The state of a substance at SATP depends on the \qquad of the \qquad between the particles in the substance, or the \qquad forces of attraction.

Solids have the following characteristics:

1. They have \qquad of inter-molecular attraction (the particles are to each other). For example, all ionic compounds are
\qquad . They contain fully charged \qquad , which form a solid
\qquad at SATP.
2. The particles are
3. The particles in a solid are " \qquad " and have . Solids \qquad .
4. Solids have a \qquad and \qquad
\qquad the shape of their container.
5. Solids have a \qquad .
6. Solids \qquad under normal conditions.

Liquids have the following characteristics:

1. There are \qquad of inter-molecular attraction (the particles are
\qquad to each other), often by \qquad . Many
\qquad compounds are \qquad .
2. The particles are \qquad (but not as close as the particles in a solid).
3. The particles in a liquid are \qquad -
They can \qquad , so liquids \qquad .
4. Liquids have \qquad . They take on the \qquad .
5. Liquids have a \qquad .
6. Liquids \qquad under normal conditions.

eg. Water is a \qquad compound. There are \qquad positive and negative parts of the molecules. This is called "_ Hydrogen bonding holds the molecules together tightly enough to be a \qquad , but not tightly enough to be
\qquad . The molecules can \qquad .

Gases have the following characteristics:

1. There are \qquad of inter-molecular attraction (the particles have to each other).
2. The particles are \qquad -.
3. The particles in a gas are \qquad .
They can \qquad and \qquad .
4. Gases have \qquad . They take on the
5. Gases have \qquad . They will
\qquad to take up whatever space is available.

6. Gases can \qquad under normal conditions.

Because they have \qquad , pure covalent compounds have \qquad . Many pure covalent compounds are \qquad
\qquad , for example; \qquad .

Because they can flow, both liquids and gases are \qquad .

The States of Matter and Types of Molecular Motion

The Kinetic Molecular Theory of Matter (___) states that all matter is made up of
\qquad
\qquad (__ , -__ or \qquad) and that these particles are in . There are three different types of molecular motion:

1. Vibrational motion: The particles in a substance \qquad (move \qquad and __) about a fixed point. For example, the atoms within a compound vibrate back and forth \qquad .

- vibration occurs in \qquad , \qquad and \qquad .
- vibration is the only type of movement of the particles in \qquad .

2. Rotational motion: The particles in a substance \qquad or \qquad about a fixed axis, just like the \qquad on a \qquad .

- the particles in a solid are "__" by strong
\qquad attraction, so they \qquad .
- the particles in \qquad and \qquad are free to move, so they \qquad as well as \qquad . This is what
 allows liquids and gases \qquad (be \qquad).

3. Translational motion: The particles in a substance can move from \qquad to \qquad (__)).

- the particles in a solid are " \qquad $"$ by strong attraction, so they
- The particles in a liquid have \qquad inter-molecular attraction so they can gradually move from \qquad to \qquad . Liquids have
\qquad translational motion
- The particles in a gas have \qquad inter-molecular attraction, so they \qquad and have \qquad translational motion

Characteristics of Solids, Liquids and Gases

	Solids	Liquids	
Describe the strength of attractive forces between particles.			Gases
Describe the amount of space between particles.			
Can the particles in this state be compressed?			
Do the particles in this state have a definite shape?			
Do the particles in this state have a definite volume?			
Can the particles in this state flow (is this state a fluid)?			
Does the volume of this state increase when heated?			
Describe the types motion of particles in this state.			
Describe the relative potential energy of the particles.			

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Temperature and the State of Matter

The KMT states that the particles in matter are in \qquad . The energy that objects have because of their motion is called \qquad energy ().

Temperature is defined as the \qquad of the particles in a substance. That is, temperature tells us, on average, how \qquad the particles in a substance are \qquad . The higher the temperature, the \qquad the particles are moving.

Temperature can be measured in \qquad . The \qquad scale is based on the
\qquad (__) and \qquad points of \qquad : \qquad and \qquad .

However, if temperature is supposed to measure \qquad , then:

- there should be no such thing as \qquad temperatures, because there can not be
\qquad and
- \qquad should mean \qquad . But we know that the particles in a solid can
\qquad . That is \qquad does not mean \qquad .

There is another temperature scale called the \qquad () scale. This is an \qquad scale, so it does not need a \qquad () sign. \qquad means \qquad _, which is known as \qquad .
At \qquad , all motion \qquad .

A Celsius degree and a Kelvin are the \qquad
\qquad . They only differ in the position of
\qquad
\qquad (\qquad is equal to \qquad .

eg. $25^{\circ} \mathrm{C}=$
$37^{\circ} \mathrm{C}=$

Any two substances with the same temperature have almost the same \qquad .

Kelvin

By changing the temperature of a substance, we can change its \qquad . As temperature increases, the particles move \qquad and \qquad . At a certain temperature, they will have enough \qquad energy to \qquad . With even more kinetic energy they can completely overcome the \qquad forces of attraction and \qquad , becoming a \qquad .

When the state of a substance changes, its \qquad energy () changes.

Recall: Potential energy is the energy that objects have because of their \qquad and \qquad to other objects.

The states of matter have different amounts of potential energy because of the \qquad the particles:

- the particles of a solid are \qquad , so E_{p} is \qquad
- the particles in a liquid are a little \qquad , so their E_{p} is \qquad
- the particles in a gas are \qquad , so their E_{p} is \qquad

The state of a substance tells us how much \qquad energy the particles have. The temperature of a substance tells how much \qquad energy the particles have.
eg. Compare the potential and kinetic energy of the following substances:molten iron at 1808 K and helium gas at 298 K .

	Molten Iron at 1808 K	Solid NaCl at 966 K	Helium Gas at 37K
Potential Energy			
Kinetic Energy			

Pressure and the State of Matter

Pressure is a measure of the \qquad exerted on a certain \qquad by the \qquad with the surface of that area.

The more particles there are, and the higher their temperature (the
\qquad they are moving), the \qquad the pressure
they can exert because they hit their container with more \qquad .

If the pressure on a gas is increased, the particles are squeezed \qquad , until they are close enough together to become a \qquad . With even more pressure, a liquid can be converted to a \qquad .

Similarly, decreasing pressure can convert a solid to a \qquad and a liquid to a \qquad .

Standard (Air) Pressure is \qquad kPa (\qquad
= \qquad
$=$
$=$ \qquad
$=$ \qquad
eg. convert 23.5 PSI to mmHg

A Mercury Barometer Invented by Torricelli. A unit of pressure, the torr, is named in his honour, where 760 torr $=760 \mathrm{~mm} \mathrm{Hg}$

Understanding Temperature, Pressure and the States of Matter

1. Carefully re-read the notes from the last two days. They contain a great deal of information.
2. In general, what determines the state of a substance at SATP?
3. Describe what happens to the particles of a substance during:
a) evapouration (boiling)
b) sublimation of a solid
c) freezing
4. Define kinetic energy.
5. Define temperature. What does temperature tell us about the motion of the particles in a substance?
6. Explain why the Kelvin temperature scale must be used to describe molecular motion.
7. Convert between the following temperature units:
a) $25^{\circ} \mathrm{C}=$ \qquad Kelvins
d) 0 K
$=$ \qquad ${ }^{\circ} \mathrm{C}$
b) 25 K \qquad ${ }^{\circ} \mathrm{C}$
e) $0^{\circ} \mathrm{C}$ \qquad Kelvins
c) $100^{\circ} \mathrm{C}=$ \qquad Kelvins
f) 100 K
$=$ \qquad ${ }^{\circ} \mathrm{C}$
8. Define potential energy.
9. Which state of matter has the lowest potential energy? Which state of matter has the highest?
10. Compare the potential and kinetic energies of the following substances:
a) a piece of ice at $-28^{\circ} \mathrm{C}$ and a piece of ice at $-1^{\circ} \mathrm{C}$
b) a bottle of water vapour at $25^{\circ} \mathrm{C}$ and a bottle of liquid water at $25^{\circ} \mathrm{C}$
c) ammonia gas at $15^{\circ} \mathrm{C}$ and ammonia liquid at $-15^{\circ} \mathrm{C}$
11. Define pressure.
12. Convert between the following pressure units. Use the conversion factor method. Round your answer to the same number of significant digits as the original value.
a) 2.25 atm to Torr
b) 98.2 kPa to PSI
c) 32 PSI to atm
d) 155.4 kPa to mmHg
13. On the next page there are temperature vs. time data for a chunk of pure ice as it is heated from $-18^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$. Carefully graph this data on a temperature vs time graph (time goes on the x -axis). Use a ruler to draw five (5) straight lines to "join the dots" and bring your completed graph to our next class.

A Heating Curve for Pure Water

Time (min)	Temp $\left({ }^{\circ} \mathrm{C}\right)$
0	-18
1	-14.5
2	-10.5
3	-6
4	-3
5	0
6	0
7	0
8	0
9	0
10	12.5
11	25
12	38
13	50
14	63
15	75
16	87
17	100
18	100
19	100
20	100
21	100
22	107
23	115
24	122
25	130

\mathbf{t}_{0} to \mathbf{t}_{5}

- temperature is \qquad therefore, \qquad of particles is \qquad
- state is \qquad , therefore, \qquad of particles is \qquad
- added energy is causing the particles to \qquad
t_{5} to t_{9}
- temperature is \qquad therefore, \qquad of particles is \qquad
- state is \qquad , therefore, \qquad of particles is \qquad
- added energy is causing the particles to \qquad
\mathbf{t}_{9} to \mathbf{t}_{17}
- temperature is \qquad therefore, \qquad of particles is \qquad
- state is \qquad , therefore, \qquad of particles is \qquad
- added energy is causing the particles to \qquad
\mathbf{t}_{17} to $\mathbf{t}_{\mathbf{2 1}}$
- temperature is \qquad therefore, \qquad of particles is \qquad
- state is \qquad , therefore, \qquad of particles is \qquad
- added energy is causing the particles to \qquad
\mathbf{t}_{21} to \mathbf{t}_{25}
- temperature is \qquad therefore, \qquad of particles is \qquad
- state is \qquad , therefore, of particles is \qquad
- added energy is causing the particles to \qquad

Interpreting Energy Changes during Heating, Cooling and Changes of State

Key Points:

1. Temperature is a measure of the average \qquad energy of the particles in a substance.
2. When temperature is increasing, the motion of the particles in the substance is \qquad .
3. When temperature is decreasing, the motion of the particles in the substance is \qquad _.
4. The state of a substance determines the average \qquad energy of the particles in a substance.
5. In the solid state, the particles are very close together, so they have \qquad potential energy.
6. In the liquid state, the particles are fairly close together, so they have \qquad potential energy.
7. In the gas state, the particles are very far apart, so they have \qquad potential energy.

When the temperature of a substance is changing, \qquad energy is changing and
\qquad energy is constant.
When the state of a substance is changing, \qquad energy is changing and energy is constant.

1. Refer to the cooling curve above, indicate if the following statements are True or False:
a) From t_{1} to t_{2}, the motion of the particles is decreasing. \qquad
b) From t_{2} to t_{3}, the particles are getting closer together. \qquad
c) From t_{0} to t_{1}, the motion of the particles is decreasing. \qquad
d) From t_{3} to t_{4}, the potential energy of the particles is decreasing. \qquad
e) From t_{3} to t_{4}, the motion of the particles is increasing. \qquad
f) From t_{1} to t_{2}, the potential energy of the particles is constant. \qquad
2. In regions on cooling curves when temperature is decreasing, what is happening to the:
a) motion of the particles:
b) distance between the particles: \qquad
c) kinetic energy of the particles: \qquad
d) potential energy of the particles: \qquad
e) state of the particles: \qquad
3. In regions on cooling curves when temperature is constant, what is happening to the:
a) the motion of the particles:
b) distance between the particles: \qquad
c) kinetic energy of the particles: \qquad
d) potential energy of the particles:
e) state of the particles:
\qquad

The Kinetic Molecular Theory Applied to Gases

The Kinetic Molecular Theory is a set of statements which is used to explain the characteristics of the states of matter. The following additional statements apply specifically to the gaseous state.

1. Gases consist of small particles, either atoms or molecules depending on the substance, which are very far apart and their size is negligible (the particles themselves have essentially no volume).
2. Gas particles are in rapid and random, straight-line motion. The motion follows the normal laws of physics.
3. Collisions of the particles with the walls of their container or with other particles are PERFECTLY ELASTIC. This means that there is no loss of energy when particles collide.
4. There are essentially no attractive forces between gas particles.
5. The average kinetic energy of the particles is directly proportional to temperature. As the temperature of a gas is increased the particles move faster thereby increasing their kinetic (motion) energy.

To simplify the study of gases, scientists have defined an "Ideal Gas" as a gas in which:

1. Gas particles are so small that the particles themselves have no volume. This means that at absolute zero $(0 \mathrm{~K})$, when all motion stops, the volume occupied by the gas is zero.
2. The gas particles have zero attraction to each other (no inter-molecular attraction).

While neither of these assumptions is strictly true, they are acceptable approximations to predict the behaviour of gases under normal conditions of temperature and pressure.

Questions:

1. What type(s) of molecular motion do particles display when they are in the gas state? Describe each type of motion.
2. Use the points of the Kinetic Molecular Theory to explain the following characteristics of gases:
a) Gases always fill their container.
b) Gases are easily compressed.
c) Gases mix readily with other gases.
d) Gases diffuse. For example, the smell of ammonia gas gradually spreads throughout a room.
e) Gases exert pressure.
f) The pressure exerted by a gas increases as the temperature increases.
3. Students are sometimes asked to visualise gas particles as if they were 'billiard-balls' bouncing off each other and the sides of a pool table. Why is this not a completely accurate model of gas behaviour?

Charles' Law Practice Questions

1. Convert the following temperatures between ${ }^{\circ} \mathrm{C}$ and Kelvins. Carry the same number of decimal places as the original measurement:
a) $46.5^{\circ} \mathrm{C}=$ \qquad K
c) $-14^{\circ} \mathrm{C}=$ \qquad K
b) $650 \mathrm{~K}=$ \qquad ${ }^{\circ} \mathrm{C}$
d) $298.5 \mathrm{~K}=\square{ }^{\circ} \mathrm{C}$
2. State Charles' Law in words. Be complete.
3. To study Charles' Law, which two variables must be held constant? Which two variables are changed?
4. Write Charles' Law as a proportionality statement (using the " α " sign)
5. Write Charles' Law as a mathematical expression.
6. A sample of gas occupies a volume of 250.0 mL at $25^{\circ} \mathrm{C}$. What volume will this gas occupy at $100^{\circ} \mathrm{C}$?
7. A sample of a gas is heated from $0^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$. The final volume is 18.0 L . What was the original volume?
8. 15.27 L of a gas at an unknown temperature is cooled to $60^{\circ} \mathrm{C}$. At this temperature, it occupies a volume of 8.44 L . What was the original temperature of the gas?
9. Calculate the volume in milliliters occupied by a gas at $35^{\circ} \mathrm{C}$ if it occupies 0.285 L at $100.0^{\circ} \mathrm{C}$. Assume constant pressure. ($1 \mathrm{~L}=1000 \mathrm{~mL}$)
10. If the temperature of a gas (in Kelvins) is doubled, what happens to the volume of the gas?

Charles' Law Questions:

1a) 319.5 K
b) $377^{\circ} \mathrm{C}$
c) 259 K
d) $25.5^{\circ} \mathrm{C}$
6. 313 mL
7. $\quad 11.3 \mathrm{~L}$
8. 602 K or $329^{\circ} \mathrm{C}$
9. 235 mL
10. the volume also doubles

Boyle's Law Practice Questions

1. There are several ways in which the pressure of a gas can be measured. Some of the units for gas pressure with their standard values are:

- 101.3 kPa (kilopascals)
- 760.0 mm Hg (millimetres of mercury)
- 760.0 Torr
- 1.00 atm (atmosphere)
- 15.00 PSI (pounds per square inch)

Using the fact that these are all equivalent values (all are measures of average air pressure at sea level), make the following conversions. Report the same number of significant digits as are in the original measurement. Refer back to the notes for lesson \#2 if you do not remember how to do this.
a) 550 Torr $=$ \qquad kPa
d) $1.00 \mathrm{kPa}=\square$ Torr
b) $95.9 \mathrm{kPa}=$ \qquad atm
e) $266 \mathrm{~atm}=$ \qquad kPa
c) $3.0 \mathrm{~atm}=$ \qquad PSI
f) $19.2 \mathrm{PSI}=$ \qquad mmHg
2. State Boyle's Law in words. Be complete.
3. To study Boyle's Law, which two variables were held constant? Which two variables are changed?
4. Write Boyle's Law as a proportionality statement (using the " α " sign).
5. Write Boyle's Law as a mathematical expression.
6. The barrel of a bicycle pump can compress air from 1.2 atm to 6.0 atm . If the volume of the air before compression is 16.0 L , what is the volume of the air after it has been compressed?
7. A weather balloon containing 35.0 L of helium at 98.0 kPa is released and rises. Assuming that temperature is constant, what is the volume of the balloon when the atmospheric pressure is 25.0 kPa ?
8. A small canister (tank) of oxygen gas contains 500.0 mL of gas at a pressure of 3.00 atm . The gas is released and captured in a large balloon, which expands to a final volume of 1.44 L . What is the pressure of the gas in the balloon?
9. A 6.75 L sample of nitrogen at 1140 torr is allowed to expand to 13.0 L . The temperature remains constant. What is the final pressure in atmospheres?
10. The pressure on a gas is doubled. What happens to the volume of the gas?

```
Boyle's Law Questions:
```

1a) 73 kPa
b) 0.947 atm
c) 45 PSI
1d) 7.50 Torr
e) $2.69 \times 10^{4} \mathrm{kPa}$
f) 973 mmHg

```
6. 3.2 L
7. \(\quad 137 \mathrm{~L}\)
8. \(\quad 1.04 \mathrm{~atm}\)
9. 592 Torr or 0.779 atm
10. the volume is halved
```


Gay-Lussac's Law Practice Questions

1. State Gay-Lussac's Law in words. Be complete.
2. To study Gay-Lussac's Law, which two variables were held constant? Which two variables are changed?
3. Write Gay-Lussac's Law as a proportionality statement (using the " α " sign).
4. Write Gay-Lussac's Law as a mathematical expression.
5. A woman has filled her car tires on a hot summer day $\left(27^{\circ} \mathrm{C}\right)$ to a pressure of 220 kPa . The tires are cooled during the first cold winter night to $-10^{\circ} \mathrm{C}$.
a) Assuming that the tires have not lost any air, what is the air pressure in the car tires at this time?
b) If she measures the tires' air pressure with a tire gauge in PSI, what would it read in the winter?
6. A student is leaving to play a soccer tournament in Florida in December. She goes out to the garage on a $-12^{\circ} \mathrm{C}$ day and fills her soccer ball to the regulation 8.00 PSI final pressure. When she gets to Florida, the temperature is $32^{\circ} \mathrm{C}$. The ball will rupture if the internal pressure goes over 10 PSI. Will the soccer ball rupture?
7. A sample of a gas is collected at $35.0^{\circ} \mathrm{C}$ and 0.95 atm . What would the pressure of the gas be at standard temperature $\left(0^{\circ} \mathrm{C}\right)$, in atmospheres?
8. A sample of gas has its temperature (in K) doubled. What will happen to the pressure of the gas?

Moles of Gas (n) Practice Questions

1. As the number of moles of a gas increases, what will happen to the pressure exerted by the gas?
2. What variables must be held constant to study the relationship between moles of gas and pressure?
3. Write the relationship between moles of gas and pressure as a proportionality statement.
4. Write the relationship between moles of gas and pressure as a mathematical expression.
5. If 4.55 mol of argon gas exerts a pressure of 367.2 kPa , what pressure will be exerted by 2.50 mol of argon under the same conditions?
6. Write the relationship between moles and volume of a gas as a proportionality statement and as a mathematical expression. What variables must be held constant for these expressions to be true?
7. If 4.50 moles of a gas occupies a volume of 100.0 L , what is the volume of 2.00 moles of the same gas under the same conditions?
8. What is the volume of one mole of any gas at STP (from the moles unit)?
9. What is the mathematical relationship between number of moles of a gas and its volume at STP (from the moles unit)?
10. An unknown HOBrFINCl gas at STP occupies 19.7 L and has a mass of 24.64 g . What is the molar mass of this gas? What is its likely identity?
Gay-Lussac's Law Questions:
5a) $193 \mathrm{kPa} \quad$ b) 28.6 PSI
11. 9.35 PSI , No the ball will not rupture
12. 0.84 atm
13.

Moles of Gas Practice Questions
5. 202 kPa
7. 44.4 L
8. $22.4 \mathrm{~L} / \mathrm{mol}$
9. $\mathrm{V}=\mathrm{n} \times 22.4 \mathrm{~L} / \mathrm{mol}$
10. $28.02 \mathrm{~g} / \mathrm{mol}$, the gas is probably N_{2}

The Combined Gas Law Practice Questions

1. A 200.0 mL sample of gas is collected at 50.0 kPa and $217^{\circ} \mathrm{C}$. What volume would this gas occupy at 100.0 kPa and $0^{\circ} \mathrm{C}$?
2. A welder needs 5000.0 L of oxygen gas at 150.0 kPa pressure and $21^{\circ} \mathrm{C}$. To what pressure must a 50.0 L tank be filled at $13^{\circ} \mathrm{C}$?
3. Natural gas is usually stored in underground reservoirs or in above-ground tanks. A supply of natural gas is stored in an underground reservoir with a volume of $8.0 \times 10^{5} \mathrm{~m}^{3}$ at a pressure of 360 kPa and temperature of $16^{\circ} \mathrm{C}$. It is then transferred to above-ground tanks at 120 kPa and $6^{\circ} \mathrm{C}$.
a) What is the volume of the gas when it is above ground?
b) The volume of each above-ground tank is $2.7 \times 10^{4} \mathrm{~m}^{3}$. How many of these tanks will be required to hold ALL of the gas?
4. The vapourized fuel in the cylinder of diesel engine occupies 1.0 L at $24^{\circ} \mathrm{C}$ and 101.3 kPa . As the engine operates, the fuel is compressed to 0.0714 L at $480^{\circ} \mathrm{C}$. What is the pressure in the cylinder under these conditions?
5. A weather balloon with a volume of 55.0 L is filled with hydrogen gas at a pressure of 98.5 kPa and a temperature of $13^{\circ} \mathrm{C}$. When the balloon is released it rises to the stratosphere where the temperature is $-48^{\circ} \mathrm{C}$ and the pressure is 19.7 kPa . What is the volume of the balloon in the stratosphere?
6. A 6.00 L sample of gas has its pressure tripled, the temperature halved and the number of moles quadrupled. What is the new volume of the gas? (hint: you can choose any initial values for the pressure, temperature and number of moles- then adjust them according to the question).
```
Answers
1. \(\quad 55.7 \mathrm{~mL}\)
2. \(1.46 \times 10^{4} \mathrm{kPa}\)
3a) \(2.3 \times 10^{6} \mathrm{~m}^{3}\)
3b) 86 tanks to hold all the gas
4. \(3597.1 \mathrm{kPa}=3.6 \times 10^{3} \mathrm{kPa}\)
5. 216 L
6. \(\quad 4.00 \mathrm{~L}\)
```


Ideal Gas Law Practice Questions

1. What is the volume of 0.25 grams of oxygen gas, O_{2}, measured at $25^{\circ} \mathrm{C}$ and 100.0 kPa ?
2. A 5.0 L tank contains hydrogen, H_{2}. The temperature is $0^{\circ} \mathrm{C}$ and the pressure is 1.0 atm .
a) How many moles of hydrogen gas are present?
b) How many grams of hydrogen are present?
3. At what Celsius temperature will 10.0 grams of ammonia, NH_{3}, exert 700.0 mmHg pressure in an 8.0 L container?
4. Calculate the volume of 1.00 mol of chlorine gas, Cl_{2}, at STP .
5. Pounds per square inch is a commonly used pressure unit. The standard value is 15.0 PSI. What value of the ideal gas constant, R, must be used with this unit? (Hint: Substitute standard values for all the other variables into the ideal gas law.)
6. The volume of air in room 219 is about 140,000 L. How many "air molecules" are there in the room at $22^{\circ} \mathrm{C}$ and 100.0 kPa ?
7. 2.40 g of a gas occupy a volume of 2.80 L at $180^{\circ} \mathrm{C}$ and 0.500 atm . Calculate the molar mass of the gas.
8. What volume would 1.3×10^{22} gas molecules occupy at $27^{\circ} \mathrm{C}$ and 304 kPa ?
9. The density of a gas is $1.35 \mathrm{~g} / \mathrm{L}$ at standard temperature and pressure (STP). What is the molar mass of the gas at STP?
10. A certain gas occupies 2.00 L . What volume will the gas occupy if the pressure is doubled, the Kelvin temperature is tripled and half the molecules escape? Hint: Use the combined Gas Law.
[^0]
[^0]: Answers:

 1. 0.19 L

 2a) 0.22 mol b) 0.44 g
 3. $-120^{\circ} \mathrm{C}$
 4. 22.4 L
 5. 1.23
 6. 3.4×10^{27} molecules
 7. $\quad 63.8 \mathrm{~g} / \mathrm{mol}$
 8. $\quad 0.18 \mathrm{~L}$
 9. $30.2 \mathrm{~g} / \mathrm{mol}$
 10. 1.50 L

