Lesson	Topics Covered	Homework Questions and Assignments
1	Note: Introduction to Solutions	• complete worksheet: Introduction to Solutions:
	• review of the organization of matter	Practice Questions
	• define: solution, solute, solvent	• complete the summary chart comparing the
	• types of solutions	types of matter (handed out in class)
	characteristics of solutions	• read pages 277 – 278 in text. Visualize and UNDERSTAND what is happening when an
	Note: Solubility of Substances	ionic substance dissolves in water
	• explaining why substances dissolve	
	hydration shells and dissociation	
2	Note: Describing the Concentration of	• complete worksheet: Practice Problems:
	Solutions Qualitatively	Solubility Curves
	• concentrated vs. dilute	
	• saturated, unsaturated and super-saturated	
	• the seed crystal test for saturation	
	Note: Solubility Curves	
	• definition of solubility	
	• solubility and temperature	
	 reading solubility curves 	
3	Note: Concentration of Solutions, quantitative	• answer questions 1 – 3 on worksheet:
	• % W/W	Concentration of Solutions Problems
	• % W/V	
	• % V/V	
	• density	
4	Note: Concentration of Solutions, quantitative	• answer questions 4 - 8 on worksheet:
	(continued)	Concentration of Solutions Problems
	• molar concentration (C in mol/L)	
	• how to make solutions	
	diluting stock solutions	
5	Note: Introduction to Acids, Bases and Neutral	• complete handout: Properties of Acids and
	Substances	Bases
	• definitions	
	• properties (demo lab)	
6	Note: Reactions of Acids and Bases	• complete handout: Reactions of Acids and
	• acids plus metals	Bases
	• acids plus carbonates	
	• acids plus bases (neutralization)	
7	Describing Acids and Bases	• complete handout: Strength, Concentration and
	• concentration	pH of Acids and Bases
	 ionization vs. dissociation 	
	• strength	
	• pH	
8	Note: Preparing Solutions of Acids and Bases	• complete Practice Questions: Concentrations of
	• diluting acid stock solutions (AAA)	Acids and Bases
	• calculating the amount of solid acid or base	
	needed to make a solution with a certain	
	concentration	

SCH 3UI Unit 9 Outline: Solutions, Acids and Bases

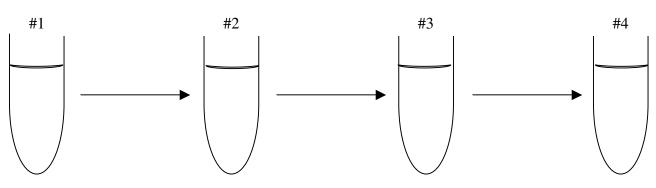
Introduction to Solutions

Recall : the organization of matter:			
A solution is defined as a		Solutions contain	
types of particles, mixed.			
A solution is made of a plus	s one or more		
The is the substance that is p			
The is the substance that is p	resent is the	_ amount. It is	
There are many different types of solutions, a) solid in liquid:			
b) gas in liquid:			
c) gas in gas:			
 d) liquid in gas: 			
A solution in which the solvent is			
Note: not ALL solutions are			
() such as are	-		
Solutions have the following characteristics: 1. homogeneous:			ermometer
 made of only one A phase is a of matter, with characteri permanent: the will not 	stics (it all looks the same)		condensa
 4. the solute can NOT be separated from th 		図	and a second
 the solute can be separated from the solv 		02	water in
or These met			A
and separate substances based on differen		. A wat	er +
 6. solutions have compos of solute and solv 		heat	anol () pure ethanol
eg of sugar in of sugar in			

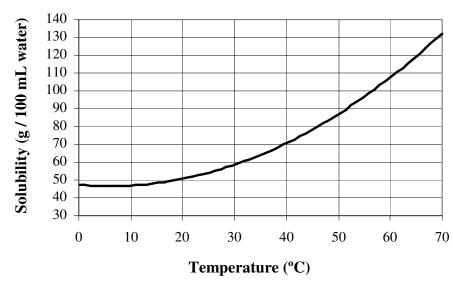
Introduction to Solutions: Practice Questions

Read pages 264, 266-267 of Nelson Chemistry 11 and refer to your class notes (including the notes from the first unit) to answer the following questions:

- 1. Define the following terms:
- a) matter, pure substance, mixture, element, compound, solution, mechanical mixture
- b) aqueous solution, alloy
- c) solvent, solute, homogeneous, heterogeneous, phase
- d) electrolyte, non-electrolyte
- 2. Why is water known as the "universal solvent"? (page 264)
- 3. List six unwanted substances that are commonly dissolved in water supplies. (page 264)
- 4. Explain why homogenized milk is not considered to be a solution. (page 266).
- 5. Are all solutions transparent? Give an example to defend your answer.
- 6. Are all aqueous solutions transparent?
- 7. Are all aqueous solutions colourless?
- 8. What type of compounds are electrolytes? What type of compounds are non-electrolytes?
- 9. Identify the solute(s) and solvent in each of the following solutions:
- a) sterling silver (often stamped with the number 925) is an alloy of 92.5% silver and 7.5% copper
- b) tincture of iodine is 3% solid iodine dissolved in 97% ethanol (alcohol)
- c) brass is 85% copper and 15% zinc
- d) "regular" gasoline is a mixture of 87% octane with other hydrocarbons
- e) bronze can be made by melting together 80% copper and 20% tin
- f) stainless steel is a homogeneous mixture of approximately 78% iron, 15% chromium and 7% nickel
- g) air is 78% nitrogen, 20.9% oxygen and 1% trace gases (Ar, Ne, CH₄, CO₂, He etc)
- h) carbonated water is made by dissolving about 1.8 g of carbon dioxide in 1.0 L of water
- 10. Answer questions 1, 2, 4, 5 and 6 on page 269. (Note: the text uses the term "molecular" to indicate a covalent compound)


Describing the Concentration of Solutions: Qualitative

Concentration can be described, **qualitatively** (______) as follows:

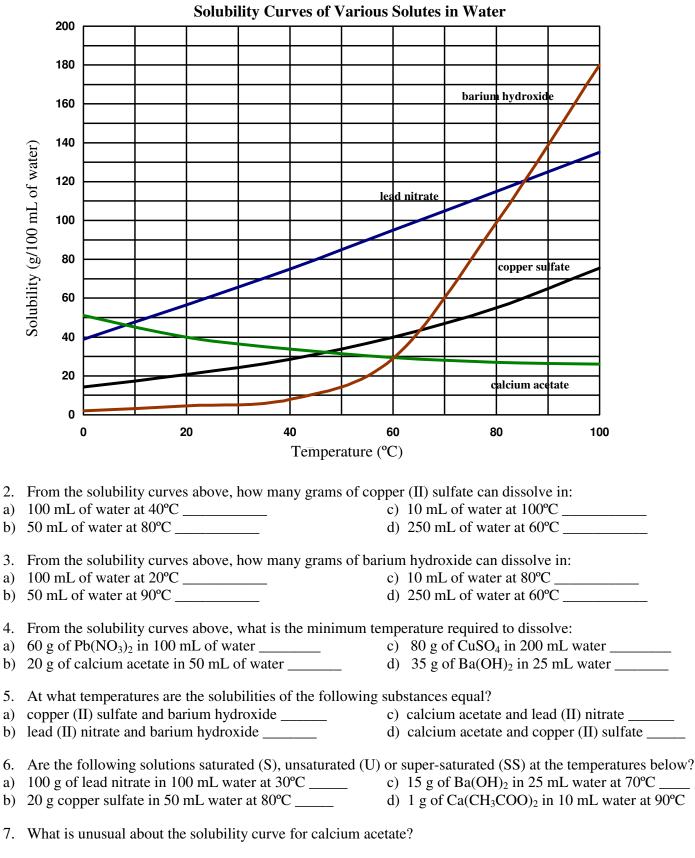

- 1. Using the words ______ and _____:
- A solution that contains relatively little solute in a large amount of solvent is said to be ______ •
- A solution that contains a relatively large amount of solute in a small amount of solvent is said to be
- 2. Concentration can also be described in terms of its _____, or how much solute is dissolved compared to the ______ of solute that can dissolve in a certain solvent at a specified _____
- a) If a solution contains the ______ of solute that will dissolve in the solvent, then the solution is said to be
- a ______ solution is made by adding solute to the solvent and stirring until no more will dissolve. There may be a few crystals of solute left on the bottom
- b) If a solution contains ______ the maximum amount of solute than will dissolve in that solvent at a certain temperature, then the solution is said to be
- an ______ solution is made by adding ______ or changing the ______ •
- for a solid in liquid solution, you can make the solution unsaturated by ______ it
- for a gas in liquid solution, you can make the solution unsaturated by ______ it. Gases ٠ dissolve better at ______ temperatures.
- c) If a solution contains ______ the maximum amount of solute than will normally dissolve in that solvent at a certain temperature, then the solution is said to be _____
- a ______ a saturated solution to dissolve the • solute, and then ______ it to a lower temperature, where solubility is ______. As long as there are no ______ present or ______, the extra solute will stay in solution and the solution will be _____

To test if a solution is saturated, unsaturated or super-saturated, add a single _____

- •
- If the solution is unsaturated, the seed crystal will _________. It will just _______. •
- If the solution is super-saturated, the seed crystal will cause other crystals of the solute to of the solution, leaving a solution behind

The Solubility of Potassium Nitrate

Solubility is defined as the maximum amount of a solute that will dissolve in a certain amount of solution at a specified temperature.


Solubility curves show how solubility changes with temperature.

- 1. Label the regions of the solubility curve where the solution is saturated, unsaturated and super-saturated.
- 2. Use the graph to estimate the solubility of potassium nitrate in 100 mL of water at:
- c) 20 °C _____ a) 10 °C _____ b) 55 °C d) 65 °C
- 3. Use the graph to estimate how many grams of potassium nitrate will dissolve in 300 mL of water at:
- c) 15 °C a) 5 °C
- d) 70 °C _____ b) 50 °C _____
- 4. What minimum temperature is required to dissolve:
- a) 48 g of KNO₃ in 100 mL of water _____
- b) 35 g of KNO₃ in 50 mL of water _____
- 5. Are the following solutions saturated, unsaturated or supersaturated at the temperatures given below?
- a) 100 g of KNO₃ in 100 mL of water at 60° C _____
- b) 100 g of KNO₃ in 100 mL of water at 40° C
- c) 40 g of KNO₃ in 25 mL of water at 70° C _____
- d) 200 g of KNO₃ in 250 mL of water at 60°C
- 6. 120 g of KNO₃ are dissolved in 100 mL of hot water. The solution is then cooled to 50° C.
- a) What is the solubility of KNO₃ at 50° C?
- b) How many grams of solid KNO₃ will crystallize from the solution as it cools?
- 7. 90.0 grams of KNO₃ are dissolved in 100.0 mL of hot water. The solution is then cooled to 22° C. How many grams of solid will crystallize when the solution is cooled if a tiny seed crystal is added?

c) 82 g of KNO₃ in 100 mL of water _____

d) 20 g of KNO₃ in 25 mL of water $_$

1. Define: concentration, dilute solution, concentrated solution, saturated solution, unsaturated solution, super-saturated solution, solubility.

8. A hot solution of barium hydroxide contains 200 g of solute per 100 mL of water. The solution is cooled to 20° C. What mass of solid will form as the solution is cooled?

Concentration of Solutions Problems

- 1. Calculate the % W/W concentration for the following solutions:
- a) 75 g of salt in 200.0 g of water
- b) 38 g of sugar in 96 mL of water. The density of pure water is 1.0 g/mL.
- c) 60.0 g of solute in 400.0 mL of solution. The solution has a density of 1.4 g/mL.
- 2. What is the % V/V concentration of the following solutions:
- a) 40.0 mL of sulfuric acid added to 120.0 mL of distilled water
- b) 15.0 mL of pure acetic acid diluted to a final volume of 0.300 L. (1L = 1000 mL)
- 3. What is the % W/V concentration of the following solutions:
- a) 24 g of salt in 72 mL of solution
- b) 140.0 g of sodium nitrite in 400.0 L of pickling brine
- 4. What is the molar concentration of a solution containing:
- a) 0.40 mol of solute in 100.0 mL of solution
- b) 7.3 g of HCl in 250 mL of solution
- c) 160.0 g of sodium carbonate in 5000.0 mL of solution
- d) 200.0 g of sucrose $(C_{12}H_{22}O_{11})$ in 100.0 mL of solution

5. Complete the following chart:

Solute	Molar Mass of Solute (g/mol)	Mass (m) in grams	Number of Moles (n)	Volume (V)	Concentration (C) in mol/L
AgNO ₃			3.50	500.0 mL	
NaCl				1.50 L	0.250 mol/L
NH ₄ Cl			0.850 mol		3.40 mol/L
KI		120.0 g		2.00 L	
NaOH		9.20 g			2.30 mol/L

- 6. What mass of solute is dissolved in:
- a) 500.0 mL of 6.00 M HCl
- b) 2.00 L of 0.100 M sodium hydroxide
- c) 125 mL of 0.0200 M potassium permanganate
- 7. If 250.0 mL of 6.00 M stock solution of NaOH is diluted to a final volume of 1.00 L with water, what is the molarity (molar concentration) of the final solution?
- 8. How much water must be added to 0.500 L of 12.0 M H₂SO₄ to make a 4.00 M solution?

Answers:

1a) 27% salt W/W; 1b) 28% sugar W/W; 1c) mass of solution = 560 g [m = DxV] then, concentration of solution is 10.7% or 11% W/W 2a) 25.0% V/V; 2b) 5.00 % V/V (you must convert 0.300 L to 300 mL)

3a) 33% W/V; 3b) 0.03500% W/V (400.0 L = 400 000 mL)

4a) 4.0 mol/L; 4b) 0.80 mol/L; 4c) 0.3019 mol/L; 4d) 5.842 mol/L

5.	Solute	Molar Mass of Solute (g/mol)	Mass (m) in grams	Number of Moles (n)	Volume (V)	Concentration (C) in mol/L
	AgNO ₃	169.88 g/mol	595 g	3.50 mol	500.0 mL	7.00 mol/L
	NaCl	58.44 g/mol	21.9 g	0.375 mol	1.50 L	0.250 mol/L
	NH ₄ Cl	53.50 g/mol	45.5 g	0.850 mol	0.250 L	3.40 mol/L
	KI	166.00 g/mol	120.0 g	0.7229 mol	2.00 L	0.361 mol/L
	NaOH	40.00 g/mol	9.20 g	0.230 mol	0.100 L	2.30 mol/L

6a) 109 g of HCl; 6b) 8.00 g of NaOH: 6c) 0.395 g of KMnO_4

7) 1.50 M concentration of final solution

8) the final volume is 1.50 L, so you need to add 1.00 L of water to the original 0.500 L

Properties of Acids and Bases

Property	Acids	Bases
Arrhenius Definition		
Examples		
Produced by which type of element or oxide dissolving in water (metals or non-metals)		
Which ion is responsible for their properties?		
Does the aqueous solution conduct electricity?		
Taste		
Skin feel		
Colour with red or blue litmus paper		
Colour with phenolphthalein		
Colour with bromothymol blue		
Reaction with metals		
Reaction with carbonates		
рН		

Label the pH scale:

							3 14

Reactions of Acids and Bases

Write **balanced** chemical equations for the reactions between the following substances. Include the states of all substances. Be sure that you can name all of the compounds from these equations.

- 2. $HNO_3(aq) + Mg(s)$
- 3. $HC_2H_3O_2(aq) + K_2CO_3(aq)$
- 4. $H_2SO_4(aq) + CaCO_3(s)$
- 5. KOH (aq) + HCl (aq)
- 6. $Ca(OH)_2$ (s) + H_2SO_4 (aq)
- 7. nitrous acid + zinc metal
- 8. acetic acid + ammonium hydroxide
- 9. hypobromous acid + aluminum metal
- 10. ammonium hydroxide (aq) + hypophosphorous acid

11. HBr
$$(aq)$$
 + Na (s)

- 12. $HClO_4(aq) + LiOH(aq)$
- 13. HNO_3 (aq) + $Al(OH)_3$ (s)
- 14. $H_2SO_3(aq) + MgCO_3(s)$

Describing Acids and Bases

There are two terms used to describe acids and bases: and .
1. The concentration of an acid or base tells us is dissolved in a certain of solution. There are many ways to indicate concentration, for example:
• 5 % V/V acetic acid (vinegar) means:
• 10 % W/W calcium hydroxide solution means:
• 6.0 M HCl (aq) means:
• 0.010 M NaOH (aq) means:
If the concentration of an acid or base is 6.0 M or more, it is said to be
If the concentration of an acid or base is 3.0 M or less, it is said to be
2. The strength of an acid or base tells us how well it (forms)
and/or () in The strength o an acid or base depends both on its and its
in water. We will consider acids and bases separately.
The Strength of Acids
The chemical formulas of acids have as their first element, indicating the
acids are compounds. Acids do not contain in their pure form.
When acids dissolve in water, the regions of water molecules interact with
parts of the acid molecules. Water causes the acid to form
() and then these ions () from the
rest of the acid molecule. Because acids and into
in water, acids are However, some acids ionize and
dissociate more than others.
Strong acids ionize . More than of the acid
Strong acids ionize More than of the acid molecules are converted to in solution. These acids are
conductors of electricity in solution () and they have
pH (close to).
eg. HCl (g) $H_2O(l)$
There are() common strong acids:

Weak acids	very much in water (less than) so most of
the acid is found as the	
Weak acids produce electricity (poor). eg. HF (1) \rightarrow	_ ions in solution, so they are conductors of _) and have pH values closer to (to
eg. HCH ₃ COO (1) H_2O (1)	

If an acid is NOT one of the six strong ones listed above, then it is a ______ acid. Many important biological compounds are weak acids. For example:

The Strength of Bases

The chemical form					
with the in their pure form		bases are		unds and conta	ann
When bases disso No better than others		is required.	However, sor	me bases	_ (separate).
Strong bases diss conductors of elec (close to).		-	• •		
The Group II (_) are		
	H ₂ O (l)				

Weak bases are o	often	so they do not	_ very much
in water so most of	of the base is still together a	as the	·
eg. $Fe(OH)_3$ (s)	H ₂ O (l) →		
$Pb(OH)_2(s)$	H ₂ O (l)		

There are also a few ______ molecules that react with water to form hydroxide ions, so these are also weak bases.

eg. $NH_3(g) + H - OH(l) \rightarrow$

Weak bases produce ______ ions in solution, so they are ______ conductors of electricity (poor electrolytes) and have pH values closer to _____ (_____ to _____ ish). If a base is not one of the ______ bases listed above, then it is a ______ base (often because of _______ in water).

The more OH- ions that are free in the solution, the ______ the base and the ______ the pH.

DO NOT CONFUSE THE WORDS

"STRONG" with "CONCENTRATED" or "WEAK" with "DILUTE"

Classify the following acids and bases as strong or weak and concentrated or dilute:

1.0 M HCl (aq) is	_ and
12.0 mol/L HCH ₃ COO (aq) is	&
9.0 M H ₂ SO ₄ (aq) is	&
0.0100 mol/L H ₂ C ₂ O ₄ (aq) is	&
0.050 M solution of HNO ₃ (aq) is	&
2.0 mol/L solution of Cu(OH) ₂ (aq) is	and
6.0 M solution of LiOH (aq) is	and
1.2 M solution of NH ₃ (aq) is	and
3.0 mol/L solution of Sr(OH) ₂ (aq) is	and

Strength, Concentration and pH of Acids and Bases

1. Name the following acids, and then classify them as strong or weak and concentrated or dilute:

Concentration & Chemical Formula	Name of Acid	Strong or Weak?	Concentrated or Dilute?
3.0 M H ₂ CO ₃			
7.0 M HI			
12.0 M H ₂ SO ₃			
1.0 M HBrO ₃			
15.0 M HCH ₃ COO			
0.50M HI			
6.0M HF			
0.001M HNO ₂			

2. Name the following bases, and then classify them as strong or weak and concentrated or dilute:

Concentration & Chemical Formula	Name of Base	Strong or Weak?	Concentrated or Dilute?
2.0 M Sr(OH) ₂			
6.0M NH ₄ OH			
9.0 M CaO			
0.10 M AgOH			
3.0 M LiOH			
0.01 M Sn(OH) ₄			
8.0 M Na ₂ O			
1.5 M Ba(OH) ₂			

3. Circle the acid in each group which is the stronger electrolyte:

a)	H_2CO_3 or H_2SO_4	c) HCl or HClO	e) HBr or HBrO ₂
b)	HNO ₃ or HNO ₂	d) H_2SO_4 or H_2SO_3	f) HF or HI
4.	Circle the base in each group whic	h will have the higher pH:	
a)	NH ₄ OH or NaOH	c) SrO or SnO	e) Cr_2O_3 or Cs_2O
b)	$Ca(OH)_2$ or $Cd(OH)_2$	d) AgOH or LiOH	f) H_2O or K_2O
5.	Are the following bases soluble (a	q) or insoluble (s) in water?	
a)	Ca(OH) ₂ :	c) LiOH:	e) Al(OH) ₃ :
b)	Ni(OH) ₃ :	d) Mn(OH) ₂ :	f) NH ₄ OH:

6. Answer the following questions using the pH values for common substances in the chart:

- a) The strongest base is: _____
- b) The acid which will be the best conductor of electricity in solution is:
- c) Two neutral substances: _______and _____
- d) One substance that has ionized:

e) One substance that will be blue with blue litmus paper :

f) One substance that will be colourless with phenolphthalein: _____

g) One weak acid: _____

Window Cleaner	pH = 11
Lemon juice	pH = 2
Stomach acid (HCl)	pH = 1.5
Tomato juice	pH = 4.7
Oven cleaner (NaOH)	pH = 14
Dill pickles	pH = 3.3
Milk	pH = 6.6
Trisodium phosphate (TSP)	pH = 13
Sea water	pH = 8.4
Blood	pH = 7.4

Practice Questions: Concentrations of Acids and Bases

- 1. Calculate the volume of 15.0 M HNO₃ stock solution that is required to make 2.5 L of 1.25 M solution.
- 2. Calculate the mass of solid barium hydroxide that is needed to make 300.0 mL of 0.200 M solution.
- 3. 75.0 mL of 18.0 M sulfuric acid stock solution is diluted to make 1.00 L. What is the final concentration of this solution?
- 4. Calculate the final concentration of a solution that is made by dissolving 14.8 g of solid sodium hydroxide in 600.0 mL of solution.
- 5. 25.0 mL of 3.66 M ammonium hydroxide solution is diluted to make a final solution with a concentration of 1.50 M. What is the volume of the finished solution?
- 6. A biochemist needs a 0.0250 M solution of citric acid ($H_3C_6H_5O_7$) for an experiment. Citric acid is solid at SATP.
- a) Is citric acid a strong or weak acid?
- b) To what extent will citric acid ionize in water?
- c) What mass of pure citric acid is required to make 680 mL of 0.0250 M solution?
- 7. Describe the steps that you would follow if you were making 500.0 mL of a 0.200 M solution of calcium hydroxide. Be complete.

Answers:

- 1. 210 mL of HNO₃ stock solution is needed (rounded from 208 mL, to 2 sig digs)
- 2. $10.3 \text{ g of Ba}(\text{OH})_2 \text{ required}$
- 3. 1.35 M is the final concentration
- 4. 0.617 M
- 5. 61.0 mL or 0.0610 L is the final volume
- 6a) weak
- 6b) it will only slightly ionize (it will be a weak electrolyte)
- 6c) 3.3 g of citric acid is needed (rounded from 3.266 g, to 2 sig digs)
- 7. Steps in making 500.0 mL of a 0.200 M Ca(OH)₂ solution:
- weigh out 7.41 g of solid Ca(OH)₂
- get a clean 500.0 mL volumetric flask, fill it about 2/3s with distilled water
- add the solid Ca(OH)₂ to the flask and swirl until it dissolves
- let the solution cool
- add distilled water until the meniscus is on the etched line of the flask. Mix.