SCH 3UI Unit 9 Outline: Solutions, Acids and Bases

Lesson	Topics Covered	Homework Questions and Assignments
1	Note: Introduction to Solutions - review of the organization of matter - define: solution, solute, solvent - types of solutions - characteristics of solutions Note: Solubility of Substances - explaining why substances dissolve - hydration shells and dissociation	- complete worksheet: Introduction to Solutions: Practice Questions - complete the summary chart comparing the types of matter (handed out in class) - read pages $277-278$ in text. Visualize and UNDERSTAND what is happening when an ionic substance dissolves in water
2	Note: Describing the Concentration of Solutions Qualitatively - concentrated vs. dilute - saturated, unsaturated and super-saturated - the seed crystal test for saturation Note: Solubility Curves - definition of solubility - solubility and temperature - reading solubility curves	- complete worksheet: Practice Problems: Solubility Curves
3	Note: Concentration of Solutions, quantitative - \% W/W - \% W/V - \% V/V - density	- answer questions $1-3$ on worksheet: Concentration of Solutions Problems
4	Note: Concentration of Solutions, quantitative (continued) - molar concentration (C in mol/L) - how to make solutions - diluting stock solutions	- answer questions 4-8 on worksheet: Concentration of Solutions Problems
5	Note: Introduction to Acids, Bases and Neutral Substances - definitions - properties (demo lab)	- complete handout: Properties of Acids and Bases
6	Note: Reactions of Acids and Bases - acids plus metals - acids plus carbonates - acids plus bases (neutralization)	- complete handout: Reactions of Acids and Bases
7	Describing Acids and Bases - concentration - ionization vs. dissociation - strength - pH	- complete handout: Strength, Concentration and pH of Acids and Bases
8	Note: Preparing Solutions of Acids and Bases - diluting acid stock solutions (AAA) - calculating the amount of solid acid or base needed to make a solution with a certain concentration	- complete Practice Questions: Concentrations of Acids and Bases

Introduction to Solutions

A solution is defined as a \qquad . Solutions contain \qquad types of particles, \qquad mixed.

A solution is made of a \qquad plus one or more \qquad .
The \qquad is the substance that is present in the \qquad amount.
The \qquad is the substance that is present is the \qquad amount. It is \qquad .

There are many different types of solutions, depending on the \qquad of the solute and solvent:
a) solid in liquid: \qquad e) liquid in liquid: \qquad
b) gas in liquid: \qquad f) solid in solid: \qquad
c) gas in gas:
g) gas in solid: \qquad
d) liquid in gas: \qquad h) liquid in solid: \qquad
A solution in which the solvent is \qquad is known as an \qquad solution ().
Note: not ALL solutions are \qquad , for example \qquad in \qquad solutions (\qquad) such as \qquad are \qquad . All \qquad solutions are \qquad .

Solutions have the following characteristics:

1. homogeneous: \qquad
2. made of only one \qquad . A phase is a \qquad of matter, with \qquad characteristics (it all looks the same)
3. permanent: the \qquad will not \qquad
4. the solute can NOT be separated from the solvent by \qquad
5. the solute can be separated from the solvent by \qquad or \qquad . These methods are \qquad and separate substances based on differences in their \qquad
\qquad —.
6. solutions have \qquad composition, that is, the of solute and solvent can change
 eg. \qquad of sugar in \qquad of water
\qquad of sugar in \qquad of water

Introduction to Solutions: Practice Questions

Read pages 264, 266-267 of Nelson Chemistry 11 and refer to your class notes (including the notes from the first unit) to answer the following questions:

1. Define the following terms:
a) matter, pure substance, mixture, element, compound, solution, mechanical mixture
b) aqueous solution, alloy
c) solvent, solute, homogeneous, heterogeneous, phase
d) electrolyte, non-electrolyte
2. Why is water known as the "universal solvent"? (page 264)
3. List six unwanted substances that are commonly dissolved in water supplies. (page 264)
4. Explain why homogenized milk is not considered to be a solution. (page 266).
5. Are all solutions transparent? Give an example to defend your answer.
6. Are all aqueous solutions transparent?
7. Are all aqueous solutions colourless?
8. What type of compounds are electrolytes? What type of compounds are non-electrolytes?
9. Identify the solute(s) and solvent in each of the following solutions:
a) sterling silver (often stamped with the number 925) is an alloy of 92.5% silver and 7.5% copper
b) tincture of iodine is 3% solid iodine dissolved in 97% ethanol (alcohol)
c) brass is 85% copper and 15% zinc
d) "regular" gasoline is a mixture of 87% octane with other hydrocarbons
e) bronze can be made by melting together 80% copper and 20% tin
f) stainless steel is a homogeneous mixture of approximately 78% iron, 15% chromium and 7% nickel
g) air is 78% nitrogen, 20.9% oxygen and 1% trace gases ($\mathrm{Ar}, \mathrm{Ne}, \mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{He}$ etc)
h) carbonated water is made by dissolving about 1.8 g of carbon dioxide in 1.0 L of water
10. Answer questions $1,2,4,5$ and 6 on page 269. (Note: the text uses the term "molecular" to indicate a covalent compound)

Concentration can be described, qualitatively (\qquad) as follows:

1. Using the words \qquad and \qquad :

- A solution that contains relatively little solute in a large amount of solvent is said to be \qquad
- A solution that contains a relatively large amount of solute in a small amount of solvent is said to be
\qquad

2. Concentration can also be described in terms of its \qquad , or how much solute is dissolved compared to the \qquad of solute that can dissolve in a certain solvent at a specified \qquad
a) If a solution contains the \qquad of solute that will dissolve in the solvent, then the solution is said to be \qquad

- a \qquad solution is made by adding solute to the solvent and stirring until no more will dissolve. There may be a few crystals of solute left on the bottom
b) If a solution contains \qquad the maximum amount of solute than will dissolve in that solvent at a certain temperature, then the solution is said to be \qquad
- an \qquad solution is made by adding \qquad or changing the \qquad
- for a solid in liquid solution, you can make the solution unsaturated by \qquad it
- for a gas in liquid solution, you can make the solution unsaturated by \qquad it. Gases dissolve better at \qquad temperatures.
c) If a solution contains \qquad the maximum amount of solute than will normally dissolve in that solvent at a certain temperature, then the solution is said to be \qquad
- a \qquad solution is made by \qquad a saturated solution to dissolve the solute, and then \qquad it to a lower temperature, where solubility is \qquad . As long as there are no \qquad present or \qquad , the extra solute will stay in solution and the solution will be \qquad
To test if a solution is saturated, unsaturated or super-saturated, add a single \qquad
- If the solution is unsaturated, the seed crystal will \qquad
- If the solution is saturated, the seed crystal will \qquad . It will just \qquad
- If the solution is super-saturated, the seed crystal will cause other crystals of the solute to
\qquad of the solution, leaving a \qquad solution behind

Solubility is defined as the maximum amount of a solute that will dissolve in a certain amount of solution at a specified temperature.

Solubility curves show how solubility changes with temperature.

1. Label the regions of the solubility curve where the solution is saturated, unsaturated and super-saturated.
2. Use the graph to estimate the solubility of potassium nitrate in 100 mL of water at:
a) $10{ }^{\circ} \mathrm{C}$ \qquad c) $20^{\circ} \mathrm{C}$ \qquad
b) $55^{\circ} \mathrm{C}$
d) $65^{\circ} \mathrm{C}$ \qquad
3. Use the graph to estimate how many grams of potassium nitrate will dissolve in 300 mL of water at:
a) $5{ }^{\circ} \mathrm{C}$
c) $15^{\circ} \mathrm{C}$ \qquad
b) $50^{\circ} \mathrm{C}$ \qquad d) $70^{\circ} \mathrm{C}$ \qquad
4. What minimum temperature is required to dissolve:
a) 48 g of KNO_{3} in 100 mL of water \qquad c) 82 g of KNO_{3} in 100 mL of water \qquad
b) 35 g of KNO_{3} in 50 mL of water \qquad d) 20 g of KNO_{3} in 25 mL of water \qquad
5. Are the following solutions saturated, unsaturated or supersaturated at the temperatures given below?
a) 100 g of KNO_{3} in 100 mL of water at $60^{\circ} \mathrm{C}$ \qquad
b) 100 g of KNO_{3} in 100 mL of water at $40^{\circ} \mathrm{C}$ \qquad
c) 40 g of KNO_{3} in 25 mL of water at $70^{\circ} \mathrm{C}$ \qquad
d) 200 g of KNO_{3} in 250 mL of water at $60^{\circ} \mathrm{C}$ \qquad
6. 120 g of KNO_{3} are dissolved in 100 mL of hot water. The solution is then cooled to $50^{\circ} \mathrm{C}$.
a) What is the solubility of KNO_{3} at $50^{\circ} \mathrm{C}$? \qquad
b) How many grams of solid KNO_{3} will crystallize from the solution as it cools?
7. 90.0 grams of KNO_{3} are dissolved in 100.0 mL of hot water. The solution is then cooled to $22^{\circ} \mathrm{C}$. How many grams of solid will crystallize when the solution is cooled if a tiny seed crystal is added?

Practice Questions: Solubility Curves

1. Define: concentration, dilute solution, concentrated solution, saturated solution, unsaturated solution, super-saturated solution, solubility.

2. From the solubility curves above, how many grams of copper (II) sulfate can dissolve in:
a) 100 mL of water at $40^{\circ} \mathrm{C}$
c) 10 mL of water at $100^{\circ} \mathrm{C}$
b) 50 mL of water at $80^{\circ} \mathrm{C}$ \qquad d) 250 mL of water at $60^{\circ} \mathrm{C}$ \qquad
3. From the solubility curves above, how many grams of barium hydroxide can dissolve in:
a) 100 mL of water at $20^{\circ} \mathrm{C}$
c) 10 mL of water at $80^{\circ} \mathrm{C}$
b) 50 mL of water at $90^{\circ} \mathrm{C}$ \qquad d) 250 mL of water at $60^{\circ} \mathrm{C}$
\qquad
4. From the solubility curves above, what is the minimum temperature required to dissolve:
a) 60 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in 100 mL of water
c) 80 g of CuSO_{4} in 200 mL water
b) 20 g of calcium acetate in 50 mL of water \qquad d) 35 g of $\mathrm{Ba}(\mathrm{OH})_{2}$ in 25 mL water
\qquad
5. At what temperatures are the solubilities of the following substances equal?
a) copper (II) sulfate and barium hydroxide \qquad c) calcium acetate and lead (II) nitrate
b) lead (II) nitrate and barium hydroxide \qquad d) calcium acetate and copper (II) sulfate
\qquad
6. Are the following solutions saturated (S), unsaturated (U) or super-saturated (SS) at the temperatures below?
a) 100 g of lead nitrate in 100 mL water at $30^{\circ} \mathrm{C}$ _ c) 15 g of $\mathrm{Ba}(\mathrm{OH})_{2}$ in 25 mL water at $70^{\circ} \mathrm{C}$
d) 1 g of $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ in 10 mL water at $90^{\circ} \mathrm{C}$
b) 20 g copper sulfate in 50 mL water at $80^{\circ} \mathrm{C}$ \qquad
7. What is unusual about the solubility curve for calcium acetate?
8. A hot solution of barium hydroxide contains 200 g of solute per 100 mL of water. The solution is cooled to $20^{\circ} \mathrm{C}$. What mass of solid will form as the solution is cooled?

Concentration of Solutions Problems

1. Calculate the $\% \mathrm{~W} / \mathrm{W}$ concentration for the following solutions:
a) 75 g of salt in 200.0 g of water
b) 38 g of sugar in 96 mL of water. The density of pure water is $1.0 \mathrm{~g} / \mathrm{mL}$.
c) 60.0 g of solute in 400.0 mL of solution. The solution has a density of $1.4 \mathrm{~g} / \mathrm{mL}$.
2. What is the $\% \mathrm{~V} / \mathrm{V}$ concentration of the following solutions:
a) 40.0 mL of sulfuric acid added to 120.0 mL of distilled water
b) 15.0 mL of pure acetic acid diluted to a final volume of $0.300 \mathrm{~L} .(1 \mathrm{~L}=1000 \mathrm{~mL})$
3. What is the $\% \mathrm{~W} / \mathrm{V}$ concentration of the following solutions:
a) 24 g of salt in 72 mL of solution
b) 140.0 g of sodium nitrite in 400.0 L of pickling brine
4. What is the molar concentration of a solution containing:
a) 0.40 mol of solute in 100.0 mL of solution
b) 7.3 g of HCl in 250 mL of solution
c) 160.0 g of sodium carbonate in 5000.0 mL of solution
d) 200.0 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in 100.0 mL of solution
5. Complete the following chart:

Solute	Molar Mass of Solute (g/mol)	Mass (m) in grams	Number of Moles (\mathbf{n})	Volume (V)	Concentration (\mathbf{C}) in mol/L
AgNO_{3}			3.50	500.0 mL	
NaCl				1.50 L	$0.250 \mathrm{~mol} / \mathrm{L}$
$\mathrm{NH}_{4} \mathrm{Cl}$			0.850 mol		$3.40 \mathrm{~mol} / \mathrm{L}$
KI		120.0 g		2.00 L	
NaOH		9.20 g			$2.30 \mathrm{~mol} / \mathrm{L}$

6. What mass of solute is dissolved in:
a) 500.0 mL of 6.00 M HCl
b) 2.00 L of 0.100 M sodium hydroxide
c) 125 mL of 0.0200 M potassium permanganate
7. If 250.0 mL of 6.00 M stock solution of NaOH is diluted to a final volume of 1.00 L with water, what is the molarity (molar concentration) of the final solution?
8. How much water must be added to 0.500 L of $12.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to make a 4.00 M solution?

Answers:
1a) 27% salt W/W; 1b) 28% sugar W / W; 1c) mass of solution $=560 \mathrm{~g}[\mathrm{~m}=\mathrm{DxV}]$ then, concentration of solution is 10.7% or $11 \% \mathrm{~W} / \mathrm{W}$
2a) $25.0 \% \mathrm{~V} / \mathrm{V}$; 2b) $5.00 \% \mathrm{~V} / \mathrm{V}$ (you must convert 0.300 L to 300 mL)
3a) $33 \% \mathrm{~W} / \mathrm{V}$; 3b) $0.03500 \% \mathrm{~W} / \mathrm{V}(400.0 \mathrm{~L}=400000 \mathrm{~mL})$
4a) $4.0 \mathrm{~mol} / \mathrm{L}$; 4b) $0.80 \mathrm{~mol} / \mathrm{L}$; 4c) $0.3019 \mathrm{~mol} / \mathrm{L}$; 4d) $5.842 \mathrm{~mol} / \mathrm{L}$
5.

Solute	Molar Mass of Solute $(\mathrm{g} / \mathrm{mol})$	Mass (m) in grams	Number of Moles (n)	Volume (V)	Concentration (C) in mol/L
AgNO_{3}	$169.88 \mathrm{~g} / \mathrm{mol}$	595 g	3.50 mol	500.0 mL	$7.00 \mathrm{~mol} / \mathrm{L}$
NaCl	$58.44 \mathrm{~g} / \mathrm{mol}$	21.9 g	0.375 mol	1.50 L	$0.250 \mathrm{~mol} / \mathrm{L}$
$\mathrm{NH}_{4} \mathrm{Cl}$	$53.50 \mathrm{~g} / \mathrm{mol}$	45.5 g	0.850 mol	0.250 L	$3.40 \mathrm{~mol} / \mathrm{L}$
KI	$166.00 \mathrm{~g} / \mathrm{mol}$	120.0 g	0.7229 mol	2.00 L	$0.361 \mathrm{~mol} / \mathrm{L}$
NaOH	$40.00 \mathrm{~g} / \mathrm{mol}$	9.20 g	0.230 mol	0.100 L	$2.30 \mathrm{~mol} / \mathrm{L}$

6a) 109 g of $\mathrm{HCl} ; ~ 6 b) 8.00 \mathrm{~g}$ of $\mathrm{NaOH}: ~ 6 c) ~ 0.395 \mathrm{~g}$ of KMnO_{4}
7) 1.50 M concentration of final solution
8) the final volume is 1.50 L , so you need to add 1.00 L of water to the original 0.500 L

Properties of Acids and Bases

Property	Acids	
Arrhenius Definition		Bases
Examples		
Produced by which type of element or oxide dissolving in water (metals or non-metals)		
Which ion is responsible for their properties?		
Does the aqueous solution conduct electricity?		
Taste		
Skin feel		
Reaction with metals		
Colour with red or blue litmus paper		
Colour with phenolphthalein		
Colour with bromothymol blue		

Label the $\mathbf{p H}$ scale:

Reactions of Acids and Bases

Write balanced chemical equations for the reactions between the following substances. Include the states of all substances. Be sure that you can name all of the compounds from these equations.

1. $\mathrm{HCl}(\mathrm{aq})+\mathrm{Li}(\mathrm{s})$
2. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s})$
3. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
4. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s})$
5. $\mathrm{KOH}(\mathrm{aq})+\quad \mathrm{HCl}(\mathrm{aq})$
6. $\quad \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
7. nitrous acid + zinc metal
8. acetic acid + ammonium hydroxide
9. hypobromous acid + aluminum metal
10. ammonium hydroxide (aq) + hypophosphorous acid
11. $\operatorname{HBr}(\mathrm{aq})+\mathrm{Na}(\mathrm{s})$
12. $\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq})$
13. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
14. $\quad \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \quad+\quad \mathrm{MgCO}_{3}(\mathrm{~s})$

Describing Acids and Bases

There are two terms used to describe acids and bases: \qquad and
\qquad .

1. The concentration of an acid or base tells us \qquad is dissolved in a certain of solution. There are many ways to indicate concentration, for example:

- $5 \% \mathrm{~V} / \mathrm{V}$ acetic acid (vinegar) means: \qquad
- 10% W/W calcium hydroxide solution means: \qquad
- $6.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ means:
- $0.010 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ means: \qquad
If the concentration of an acid or base is 6.0 M or more, it is said to be \qquad .

If the concentration of an acid or base is 3.0 M or less, it is said to be \qquad .
2. The strength of an acid or base tells us how well it \qquad (forms \qquad) and/or \qquad (
) in \qquad . The strength of an acid or base depends both on its \qquad and its
\qquad in water. We will consider acids and bases separately.

The Strength of Acids

The chemical formulas of acids have \qquad as their first element, indicating that acids are \qquad compounds. Acids do not contain \qquad in their pure form.

When acids dissolve in water, the \qquad regions of water molecules interact with
\qquad parts of the acid molecules. Water causes the acid to form \qquad (___) and then these ions___) from the rest of the acid molecule. Because acids \qquad and \qquad into
\qquad in water, acids are \qquad . However, some acids ionize and dissociate more than others.

Strong acids ionize \qquad . More than \qquad of the acid molecules are converted to \qquad in solution. These acids are \qquad conductors of electricity in solution (\qquad) and they have pH (close to \qquad).
eg. $\mathrm{HCl}(\mathrm{g}) \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

There are \qquad (_ common strong acids:
\qquad very much in water (less than \qquad) so most of the acid is found as the \qquad .

Weak acids produce \qquad ions in solution, so they are \qquad conductors of electricity (poor \qquad) and have pH values closer to \qquad
\qquad to
\qquad).
eg. $\mathrm{HF}(\mathrm{l}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})}$
eg. $\mathrm{HCH}_{3} \mathrm{COO}(\mathrm{l}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}$

If an acid is NOT one of the six strong ones listed above, then it is a \qquad acid. Many important biological compounds are weak acids. For example:

The Strength of Bases

The chemical formulas of most bases have a \qquad as their first element, combined with the \qquad ion. Bases are \qquad compounds and contain \qquad in their pure form.

When bases dissolve in water, the metal and hydroxide ions \qquad (separate).
No \qquad is required. However, some bases \qquad better than others in water, which affects their strength.

Strong bases dissolve and dissociate almost completely so they are \qquad conductors of electricity (\qquad electrolytes) and they have \qquad (close to \qquad).

The \qquad and \qquad of all Group I (\qquad) and
Group II (\qquad) are \qquad bases:

Weak bases are often \qquad so they do not \qquad very much in water so most of the base is still together as the \qquad .
eg. $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})^{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}$
$\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}$

There are also a few \qquad molecules that react with water to form hydroxide ions, so these are also weak bases.
eg. $\quad \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}-\mathrm{OH}(\mathrm{l}) \rightarrow$

Weak bases produce \qquad ions in solution, so they are \qquad conductors of electricity (poor electrolytes) and have pH values closer to \qquad (\qquad to
\qquad ish). If a base is not one of the \qquad bases listed above, then it is a
\qquad base (often because of \qquad in water).

The more OH - ions that are free in the solution, the \qquad the base and the
\qquad the pH .

DO NOT CONFUSE THE WORDS

"STRONG" with "CONCENTRATED" or "WEAK" with "DILUTE"
Classify the following acids and bases as strong or weak and concentrated or dilute:
$1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is \qquad and \qquad
$12.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCH}_{3} \mathrm{COO}(\mathrm{aq})$ is \qquad \& \qquad
$9.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is \qquad \& \qquad
$0.0100 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ is \qquad \& \qquad
0.050 M solution of $\mathrm{HNO}_{3}(\mathrm{aq})$ is \qquad \& \qquad
$2.0 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{aq})$ is \qquad and \qquad
6.0 M solution of $\mathrm{LiOH}(\mathrm{aq})$ is \qquad and \qquad
1.2 M solution of $\mathrm{NH}_{3}(\mathrm{aq})$ is \qquad and \qquad
$3.0 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq})$ is \qquad and \qquad

Strength, Concentration and $\mathbf{p H}$ of Acids and Bases

1. Name the following acids, and then classify them as strong or weak and concentrated or dilute:

 Chemical Formula	Strong or Weak?	Concentrated or Dilute?	
$3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$			
7.0 M HI			
$12.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$			
$1.0 \mathrm{M} \mathrm{HBrO}_{3}$			
$15.0 \mathrm{M} \mathrm{HCH}_{3} \mathrm{COO}$			
0.50 M HI			
6.0 M HF			
$0.001 \mathrm{M} \mathrm{HNO}_{2}$			

2. Name the following bases, and then classify them as strong or weak and concentrated or dilute:

 Chemical Formula	Name of Base	Strong or Weak?	Concentrated or Dilute?
$2.0 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$			
$6.0 \mathrm{M} \mathrm{NH} \mathrm{H}_{4} \mathrm{OH}$			
9.0 M CaO			
0.10 M AgOH			
3.0 M LiOH			
$0.01 \mathrm{M} \mathrm{Sn}(\mathrm{OH})_{4}$			
$8.0 \mathrm{M} \mathrm{Na} \mathrm{M}_{2} \mathrm{O}$			
$1.5 \mathrm{M} \mathrm{Sa}(\mathrm{OH})_{2}$			

3. Circle the acid in each group which is the stronger electrolyte:
a) $\mathrm{H}_{2} \mathrm{CO}_{3}$ or $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) HNO_{3} or HNO_{2}
c) HCl or HClO
d) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{2} \mathrm{SO}_{3}$
e) HBr or HBrO_{2}
f) HF or HI
4. Circle the base in each group which will have the higher pH :
a) $\mathrm{NH}_{4} \mathrm{OH}$ or NaOH
b) $\mathrm{Ca}(\mathrm{OH})_{2}$ or $\mathrm{Cd}(\mathrm{OH})_{2}$
c) SrO or SnO
d) AgOH or LiOH
e) $\mathrm{Cr}_{2} \mathrm{O}_{3}$ or $\mathrm{Cs}_{2} \mathrm{O}$
f) $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{K}_{2} \mathrm{O}$
5. Are the following bases soluble (aq) or insoluble (s) in water?
a) $\mathrm{Ca}(\mathrm{OH})_{2}$:
c) LiOH :
e) $\mathrm{Al}(\mathrm{OH})_{3}$:
b) $\mathrm{Ni}(\mathrm{OH})_{3}:$ \qquad d) $\mathrm{Mn}(\mathrm{OH})_{2}$: \qquad f) $\mathrm{NH}_{4} \mathrm{OH}$: \qquad
6. Answer the following questions using the pH values for common substances in the chart:
a) The strongest base is:
b) The acid which will be the best conductor of electricity in solution is:
c) Two neutral substances: \qquad and \qquad
d) One substance that has ionized: \qquad
e) One substance that will be blue with blue litmus paper :
f) One substance that will be colourless with phenolphthalein: \qquad
g) One weak acid: \qquad

Window Cleaner	$\mathrm{pH}=11$
Lemon juice	$\mathrm{pH}=2$
Stomach acid (HCl)	$\mathrm{pH}=1.5$
Tomato juice	$\mathrm{pH}=4.7$
Oven cleaner (NaOH)	$\mathrm{pH}=14$
Dill pickles	$\mathrm{pH}=3.3$
Milk	$\mathrm{pH}=6.6$
Trisodium phosphate (TSP)	$\mathrm{pH}=13$
Sea water	$\mathrm{pH}=8.4$
Blood	$\mathrm{pH}=7.4$

Practice Questions: Concentrations of Acids and Bases

1. Calculate the volume of $15.0 \mathrm{M} \mathrm{HNO}_{3}$ stock solution that is required to make 2.5 L of 1.25 M solution.
2. Calculate the mass of solid barium hydroxide that is needed to make 300.0 mL of 0.200 M solution.
3. 75.0 mL of 18.0 M sulfuric acid stock solution is diluted to make 1.00 L . What is the final concentration of this solution?
4. Calculate the final concentration of a solution that is made by dissolving 14.8 g of solid sodium hydroxide in 600.0 mL of solution.
5. 25.0 mL of 3.66 M ammonium hydroxide solution is diluted to make a final solution with a concentration of 1.50 M . What is the volume of the finished solution?
6. A biochemist needs a 0.0250 M solution of citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ for an experiment. Citric acid is solid at SATP.
a) Is citric acid a strong or weak acid?
b) To what extent will citric acid ionize in water?
c) What mass of pure citric acid is required to make 680 mL of 0.0250 M solution?
7. Describe the steps that you would follow if you were making 500.0 mL of a 0.200 M solution of calcium hydroxide. Be complete.
[^0]
[^0]: Answers:

 1. 210 mL of HNO_{3} stock solution is needed (rounded from 208 mL , to 2 sig digs)
 2. 10.3 g of $\mathrm{Ba}(\mathrm{OH})_{2}$ required
 3. 1.35 M is the final concentration
 4. 0.617 M
 5. $\quad 61.0 \mathrm{~mL}$ or 0.0610 L is the final volume

 6a) weak
 6b) it will only slightly ionize (it will be a weak electrolyte)
 6c) 3.3 g of citric acid is needed (rounded from 3.266 g , to 2 sig digs)
 7. Steps in making 500.0 mL of a $0.200 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution:

 - weigh out 7.41 g of $\operatorname{solid~} \mathrm{Ca}(\mathrm{OH})_{2}$
 - get a clean 500.0 mL volumetric flask, fill it about $2 / 3 \mathrm{~s}$ with distilled water
 - add the solid $\mathrm{Ca}(\mathrm{OH})_{2}$ to the flask and swirl until it dissolves
 - let the solution cool
 - add distilled water until the meniscus is on the etched line of the flask. Mix.

