Unit \#1, Chapter 3 Outline
Atoms, Electrons, and Periodic Trends

Lesson	Topics Covered	Reference	Homework/Assignments
1	Review of Atomic Models - features of models from Dalton, Thomson, Rutherford, Bohr and Chadwick Review of Atomic Structure - protons, neutrons and electrons - atomic number (Z) - mass number (A) - isotopes - average atomic mass - ions - standard format	Note: Atomic Models from Dalton to Chadwick Text: p. 118-130	1. Complete all notes and homework titled "Unit 1, Lesson 01". This material should be review from Grade 11. 2. Check your answers on the website: pattersonscience.weebly.com Go to: Unit 1, Lesson 01 Answers to Homework
2	Quantum Mechanical Model - contributions of Planck, Einstein, de Broglie, Heisenburg and Schrodinger - difference between an orbital and an orbit - question types for quantum mechanics - aufbau Principle, Hund's Rule and Pauli Exclusion Principle	Note: The Quantum Mechanical Model of the Atom Text: p. 131-133, 137-138 and 142-146	1. Homework questions for Unit 1, Lesson 02 at the end of the note. 2. Check your answers on the website. Go to Unit 1, Lesson 02 Answers to Homework
3	Electron Configurations - full and condensed format - exceptions to the predicted electron configurations (electron promotion) Orbital Box Diagrams		1. Homework questions for Unit 1, Lesson 03 at the bottom of last nights homework (bottom of the homework page for Unit 1, Lesson 02.
4	Quantum Numbers ($\mathrm{n}, \mathrm{l}, \mathrm{m}_{l}, \mathrm{~m}_{s}$)	Note: Representing Electron Configurations using Orbital Diagrams and Quantum Numbers Text: p. 133-138 and $147-150$	1. Homework questions at the end of the note 2. Complete handout: Homework Review of the Periodic Table 3. Complete handout "Nuclear Charge and Shielding Effect" as instructed in the homework. Bring this completed chart to our next class!
5	Trends on the Periodic Table - net nuclear attraction ($\mathrm{Z}_{\text {eff }}$) explains trends across a period - shielding effect explains trends down a group - know and explain the trends on the P.T. for atomic radius, first ionization energy, electronegativity, electron affinity and ionic radius Ionization Energies - first, second, third etc. ionization energies	Note: Electron Configurations and Trends on the Periodic Table Text: p. $152-157$	1. Complete questions on handout "Homework on Periodic Trends" 2. Do "Unit 1, Chapter 3, Review" on the web page. There will be a quiz at the beginning of Lesson 6. Bring your questions to Lesson 5.

Chemistry is the study of \qquad .
The Atomic Theory of Matter states that all matter is made of \qquad .
The following researchers have contributed to our understanding of the composition of atoms:

1. John Dalton (1766-1844) proposed the first "modern" atomic model:

Billiard-Ball Model

2. J.J. Thomson (1856-1940) used the cathode ray tube and found that:

- atoms can be broken down into smaller \qquad particles
- he discovered the \qquad , which he assigned a \qquad charge
- atoms are \qquad overall, so he proposed that the rest of the atom is a \qquad -charged solid matrix
- electrons are "stuck" in the matrix like \qquad in a \qquad

Raisin Bun Model

3. Ernest Rutherford (1871-1937) fired positively charged alpha particles (helium nuclei) at a piece of gold foil that was only a few atoms thick. Most of the alpha particles passed directly through the gold foil, which indicated that atoms are not solid particles. Rather, atoms are mostly empty space. A tiny number of alpha particles were deflected from the gold foil, and some bounced right back. This indicated that atoms contain a small, very dense positively charged "core" which Rutherford called the nucleus.

Rutherford:

- discovered the \qquad

\qquad and \qquad
- the nucleus is \qquad -charged,
- most of the atom is \qquad
- electrons are flying \qquad around the nucleus in an

Rutherford's model raised several questions:

- If like charges \qquad , what holds the positively charged nucleus together?

Nuclear Model with

 an Electron Cloud- If opposite charges \qquad , why don't the electrons stick to the \qquad ?
- The known relative masses of the atoms did not agree with the charges and masses of the nucleus calculated by Rutherford.

4. Max Planck (1858-1947)

- energy comes in discrete (fixed) amounts called " \qquad " (singular: \qquad
- a quantum is the smallest unit of \qquad

5. Albert Einstein (1879-1955)

- a quantum of energy is equivalent to a \qquad

6. Neils Bohr (1885-1962)

- he added \qquad to hydrogen gas and used a spectroscope to study the pattern of \qquad it gave off
- in their \qquad , electrons are as close to
\qquad as possible \qquad potential energy)
- when electrons in an atom absorb \qquad , they move
\qquad from the nucleus to positions of \qquad potential energy
- when electrons fall back closer to the nucleus, their potential energy \qquad and they give off this energy as

\qquad
- the wavelength (\qquad) of the light indicates how much
\qquad the electron releases
- if electrons were found randomly in a \qquad around the nucleus, excited electrons would be all distances from the nucleus so they would produce \qquad of light in a
\qquad spectrum, like a \qquad
- Bohr found that excited electrons produce only certain colours
\qquad) of light in a pattern called a
\qquad spectrum
Bohr's Planetary
Model
- he concluded that electrons must be only \qquad , \qquad distances from the nucleus
- electrons \qquad the nucleus in discrete energy levels called " \qquad
- Bohr called the shells " \qquad quantum levels" and assigned
 each shell an integer value: \qquad , \qquad , \qquad \qquad
- each shell can hold a maximum of \qquad electrons

7. James Chadwick (1891-1974)

- when he bombarded beryllium atoms with alpha particles, they gave off a

Planetary Model with Neutrons beam of particles that was not affected by a \qquad

- he discovered the \qquad , which is found in the \qquad and has \qquad
- atoms of the same element with different numbers of neutrons are called
\qquad

Unit 1, Lesson 01: Summary of Atomic Structure so far...

Atoms are made of sub-atomic particles:

- Protons: found in \qquad , charge of \qquad , mass of \qquad
- Neutrons: found in \qquad , \qquad charge, mass of \qquad
- Electrons: found in \qquad around nucleus, charge of \qquad , mass is \qquad
Atomic Number: the number of \qquad in the nucleus of an atom
- symbol is " \qquad "
- defines the \qquad of the atom eg. $Z=12$, atom is \qquad $\mathrm{Z}=47$, atom is \qquad
Mass Number: the number of \qquad $+$ \qquad in the nucleus of an atom
- symbol is " \qquad "
- it is a \qquad value, it has \qquad
- it is \qquad reported on periodic table
- isotopes are identified by their mass number

Examples:

Isotope	Pb - 206	Pb-207	Pb - 208
Atomic Number (Z)			
Mass Number (A)			
Number of Neutrons (A - Z)			

Average Atomic Mass (AAM): the \qquad average mass of all \qquad of an element

- reported on periodic table, units are \qquad
- AAM on periodic table is usually close to the mass number of the most \qquad isotope eg. AAM of carbon is \qquad , so most abundant isotope is probably \qquad
eg. most abundant isotope of argon is probably \qquad
Ions: charged atoms
- if the number of electrons equals the number of protons, the atom is \qquad
- if there are more electrons than protons, the ion is \qquad charged (an \qquad
- if there are fewer electrons than protons, the ion is \qquad charged (a \qquad
- atoms tend to gain or lose electrons to obtain a \qquad electron arrangement and become \qquad with a \qquad
eg. Mg loses \qquad electrons, forms \qquad ions

Standard format:

\# protons (atomic number, Z) $=$ \# neutrons (mass number - atomic number) = \qquad \# electrons (2 more electrons than protons) = \qquad

Unit 1, Lesson 01: Homework

1. Read pages $118-130$.
2. Answer questions on page 130: $1,2,4,5,6,7$
3. Explain why Bohr's model of the atom had to be modified. (It has two fundamental flaws).
4. Complete the summary chart below. Pay specific attention to location of the electrons in the atom.

Atomic Models from Dalton to Chadwick

Researcher and Model of Atom	Features and Limitations of this Model of the Atom (include how it is different from previous models)
John Dalton (1809)	Billiard Ball Model
J. J. Thomson (1903)	Raisin Bun Model
Ernest Rutherford (1911)	Electron Cloud Model
Neils Bohr (1913)	Planetary Model
James Chadwick (1932)	Planetary Model with Neutrons

5. Complete the following chart. Report average atomic mass to 2 decimal places.

Element	Atomic Number (Z)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Protons } \end{gathered}$	Number of Electrons	Overall Charge	$\begin{aligned} & \hline \hline \text { Number } \\ & \text { of } \\ & \text { Neutrons } \end{aligned}$	Mass Number (A)	Average Atomic Mass (u)	$\begin{gathered} \text { Isotope } \\ \text { (eg. Ag - 107) } \end{gathered}$
Mg				2+		24		
	47		46		62			
				2-				S-33
			12	0	13			
			36	2-		80		
			78					Au-197
			12		14	26		
		38		2+	50			
O			10			16		
	50		46		69			
Sb				3+		118		
			76	3+	117			
				5+				Sb-118
		78		1+		195		
			38	0		90		

6. Referring to the chart above, and using the format "Ag-107", write:
a) any atoms that are isotopes of each other
b) any atoms that are ions of each other
7. Using your Periodic Table and the format "Ag-107", predict the most common isotope for each of the following elements:
a) Mg
d) H
g) F
b) Sr
e) S
\qquad
h) Ar
\qquad
c) Al \qquad f) Na \qquad i) Pb
\qquad
\qquad
f)
8. Using only your Periodic Table, write the ion that will be formed (if any) by each of the following elements:
a) Mg \qquad d) Br \qquad g) Cs
b) S
e) N \qquad h) Ne
\qquad
c) Al \qquad f) Ba \qquad i) Te \qquad
9. Atoms and ions that have the same number of electrons are said to be isoelectronic. List three atoms or ions, including the charge on each, that are isoelectronic with the following:
a) Ar
b) Br^{1-}
c) Ne
d) Sr^{2+}
e) S^{2-}
f) Na^{1+}
\qquad

Unit 1, Lesson 02: The Quantum Mechanical Model of the Atom

Recall: The number of protons (___) in an atom determines both:

- the \qquad of the atom
- the number of \qquad in a \qquad atom

It is the \qquad and \qquad of electrons in an atom that determines the atom's \qquad and \qquad properties.

So, how are the electrons arranged?

1. Dalton: atoms are indivisible. There are no such things as electrons
2. Thomson: electrons are \qquad in a solid, positively-charged \qquad
3. Rutherford: electrons are found around the nucleus in a random \qquad
4. Bohr: electrons are found orbiting the nucleus in fixed, \qquad (energy) levels

- there are an \qquad number of principal quantum levels, n
- each successive quantum level is \qquad from the nucleus and \qquad energy

5. de Broglie (1924)

- all matter has \qquad properties
- the wave-like behaviour of small objects such as \qquad is significant
- because of their \qquad properties and \qquad repulsion, electrons do not move in simple, defined orbits as Bohr suggested

6. Schrodinger (1926)

- combined de Broglie's wave-like properties of particles and Planck/Einstein's idea of \qquad
- developed a mathematical model called " \qquad " to predict the \qquad of electrons within an atom

7. Heisenberg (1927)

- Heisenberg's Uncertainty Principle: It is impossible to know BOTH an electron's \qquad
(\qquad) and \qquad (trajectory or path)
- an experiment designed to determine an electron's location (\qquad) will change the electron's \qquad (trajectory or path)
- an experiment designed to determine an electron's \qquad will change the electron's location
\qquad _)

Quantum Mechanical Model

- Schrodinger used mathematical wave functions to define \qquad : regions in 3-D space where an electron can be found \qquad of the time
- an orbital holds a maximum of \qquad electrons
- principal quantum levels can be divided into \qquad containing different types of orbitals (\qquad etc) depending on the \qquad
\qquad) of the electrons

Unit 1, Lesson 02: Summary of the Quantum Mechanical Model

For $\mathbf{n}=\mathbf{1}$ (the \qquad quantum level, or the energy level closest to the nucleus)

- holds a maximum of $2 n^{2}$ electrons, or () ___ electrons
- there are $\mathrm{n}^{2}(\quad)$ or ___ orbital (each orbital can hold 2 electrons)
- there is ___ (n) type of orbital:
\qquad spherical "s" orbital, called \qquad
For $\mathbf{n}=\mathbf{2}$ (the \qquad quantum level, or the second energy level away from the nucleus)
- holds a maximum of $2 n^{2}$ electrons, or (\qquad electrons
- there are $n^{2}(\quad)$ or \qquad orbitals (each orbital can hold 2 electrons)
- there are \qquad (n) types of orbitals: spherical "s" orbital, called \qquad perpendicular "p" orbitals called \qquad , \qquad and \qquad shaped and found at right angles to ("p" orbitals are \qquad each other in three three planes)
three " p " orbitals

For $\mathbf{n}=\mathbf{3}$ (the \qquad quantum level)

- holds a maximum of $2 n^{2}$ electrons, or (
) \qquad electrons
- there are $\mathrm{n}^{2}(\quad)$ or \qquad orbitals (each orbital can hold 2 electrons)
- there are \qquad (n) types of orbitals
\qquad spherical "s" orbital, called \qquad
___ perpendicular "p" orbitals called \qquad
\qquad diffuse "d" orbitals called \qquad
\qquad
\qquad shaped and found in five planes)

five " d " orbitals

For $\mathbf{n}=\mathbf{4}$ (the fourth quantum level, or the fourth energy level away from the nucleus)

- holds a maximum of $2 \mathrm{n}^{2}$ electrons, or (\qquad electrons
- there are n^{2} (
) or \qquad orbitals (each orbital can hold 2 electrons)
- there are \qquad (n) types of orbitals:
\qquad spherical "s" orbital, called \qquad perpendicular "p" orbitals called \qquad diffuse "d" orbitals called \qquad fundamental " f " orbitals called \qquad (the " f " orbitals are large, shape unknown)

There are an \qquad number of quantum levels; each one is further and further from the nucleus. The types of orbitals are: \qquad etc. The $\mathrm{g}, \mathrm{h}, \mathrm{i}$ etc. orbitals are for electrons in their \qquad .

Question Types:

1. The maximum number of electrons that can be held in each quantum level is \qquad .
2. The total number of orbitals in each quantum level is \qquad .
3. The number of types of orbitals (sub-levels) in each quantum level is \qquad .
4. The types of orbitals are identified with letters . . s, p, d, f, ...

If these occur in a given energy level there is(are) always:
\qquad s-orbitals, \qquad p-orbitals, \qquad d-orbitals, \qquad f-orbitals
5. The maximum number of electrons which may be designated (named):

1s: \qquad , 2s: \qquad , 2 p : \qquad , 3s: \qquad , 3p: \qquad , 3d: \qquad , 4s: \qquad , 4p: \qquad 4d: \qquad , 4f: \qquad

Unit 1, Lesson 02: Homework on Quantum Mechanics

1. Read pages 131 - 133 (not Quantum Numbers, yet), pages $137-138$ and pages $142-146$.
2. Summarize and UNDERSTAND the contributions of Planck, Einstein, de Broglie, Schrodinger and Heisenberg to the quantum mechanical model.
3. Explain how the quantum mechanical model of the atom differs from Bohr's model of the atom.
4. Explain how an orbital is different from an orbit. Be specific.
5. How many electrons (maximum) are in quantum level 4 ? \qquad , When $\mathrm{n}=3$ \qquad
6. How many electrons can be designated as 3 d ? \qquad , 4s \qquad 5 f \qquad
7. How many types of orbitals are there in quantum level 3 ? \qquad , When $\mathrm{n}=4$ \qquad
8. How many orbitals are there in quantum level 2 ? \qquad , When $\mathrm{n}=5$ \qquad , $\mathrm{n}=3$ \qquad
9. How many electrons can be held in quantum level 5? \qquad , When $\mathrm{n}=1$ \qquad
10. How many orbitals are there in quantum level 1 ? \qquad ,When $\mathrm{n}=4$ \qquad
11. How many types of orbitals are there in quantum level 5 ? \qquad , When $\mathrm{n}=2$ \qquad , $\mathrm{n}=6$ \qquad
12. How many electrons can be designated 2 p ? \qquad , 4p \qquad , 5s \qquad 6 f
13. Circle the orbitals which do not exist: $3 \mathrm{f} \quad 2 \mathrm{p}$
14. Questions 6,7 on page 145.
15. Questions $10,11,12$ and 13 on page 150.

Unit 1, Lesson 03: Homework on Electron Configurations

1. Write the predicted and actual (experimentally determined) electron configurations for Mo, Ag and Au .
2. If valence electrons are found in the order that we would predict ($1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$ etc.), then the electrons are in their ground state and as close to the nucleus as possible. If the electron configuration is "out of order", it means that electrons are not in their ground state. Instead, they are in energy levels further from the nucleus than expected, so these electrons are in an excited state.
Do the following electron configurations show electrons in their ground state or an excited state?
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 p^{2}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 p^{2}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 6 s^{1}$
f) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$
g) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 4 d^{4}$ \qquad

Unit 1, Lesson 03: Electron Configurations

There are three rules when writing electron configurations:

1. Aufbau Principle: electrons fill the \qquad available energy level (get as \qquad to the ___ as possible)
2. Pauli Exclusion Principle: each orbital holds a maximum of \qquad electrons with opposite \qquad
3. Hund's Rule: electrons do not \qquad in an orbital until all orbitals of the same sub-level are \qquad

Electron configurations are written using the form:

The order of filling puts the electrons as close to the nucleus as possible. The order of filling can be read from the \qquad
\qquad or remembered using the mnemonic:

${ }_{15} \mathrm{P} \longrightarrow$
${ }_{40} \mathrm{Zr} \longrightarrow$
${ }_{54} \mathrm{Xe} \longrightarrow$
${ }_{76} \mathrm{Os}$

Electron Configurations using the Condensed Format

An atom's full electron shells are represented by the symbol of the nearest \qquad Noble Gas, in \qquad brackets, followed by the electron configurations for the \qquad electrons:
${ }_{15} \mathrm{P}$ \qquad ${ }_{40} \mathrm{Zr}$ \qquad
${ }_{54} \mathrm{Xe}$ \qquad ${ }_{76} \mathrm{Os}$ \qquad

Exceptions to the Predicted Electron Configurations

Chromium and molybdenum:

- their predicted configurations end in \qquad , but their actual configurations end in \qquad
- Why? it is lower energy (\qquad) to have the "d" orbitals all \qquad _, so one "___" electron is \qquad to the " \qquad " sub-level

Copper, silver and gold:

- their predicted configurations end in \qquad , but their actual configurations end in \qquad
- Why? it is lower energy (\qquad) to have the "d" orbitals all \qquad , so one " \qquad " electron is \qquad to the " \qquad " sub-level

Unit 1, Lesson 04: Summary of Quantum Numbers
Summary: The "allowed" values for quantum numbers for each principal quantum level " n ":

\boldsymbol{n}	\boldsymbol{l}	$\boldsymbol{m}_{\boldsymbol{l}}$	$\boldsymbol{m}_{\boldsymbol{s}}$	corresponding sub-level	number of orbitals in this sub-level
$\mathrm{n}=1$	0	0	$+1 / 2,-1 / 2$	1 s	1
$\mathrm{n}=2$	0	0	$+1 / 2,-1 / 2$	2 s	2 p
$\mathrm{n}=3$	1	$-1,0,+1$	0		3
	1	$-1,0,+1$	$+1 / 2,-1 / 2$	3 p	1
	2	$-2,-1,0,+1,+2$		3 d	3
$\mathrm{n}=4$	0	0		4 s	1
	1	$-1,0,+1$	4 p	3	
	2	$-2,-1,0,+1,+2$	$+1 / 2,-1 / 2$	4 d	3

eg. 33 As: \qquad or \qquad

$1 \mathrm{~s} \quad 2 \mathrm{~s}$

$\mathrm{n}=$
$\boldsymbol{l}=$
$\mathrm{m}_{l}=$
$\mathrm{m}_{s}=$
${ }_{29} \mathrm{Cu}$ \qquad or \qquad

Unit 1, Lesson 04: Homework on Quantum Numbers

1. Write the quantum numbers that represent the following electrons:
a) a $5 \mathrm{p}^{3}$ electron would be given the quantum numbers: $\mathrm{n}=\ldots, l=$ \qquad , $\mathrm{m}_{l}=$ \qquad and $\mathrm{m}_{s}=$ \qquad
b) a $3 \mathrm{~s}^{2}$ electron would be given the quantum numbers: $\mathrm{n}=$ \qquad , $l=$ \qquad , $\mathrm{m}_{l}=$ \qquad and $\mathrm{m}_{s}=$ \qquad
c) $a 4 f^{6}$ electron would be given the quantum numbers: $n=$ \qquad , $l=$ \qquad , $\mathrm{m}_{l}=$ \qquad and $\mathrm{m}_{s}=$ \qquad
2. What are the allowable (possible) values for l when:
a) $\mathrm{n}=4$: \qquad c) $\mathrm{n}=1$: \qquad
b) $\mathrm{n}=3$: \qquad d) $\mathrm{n}=5$: \qquad
3. What are the allowable (possible) values for m_{l} when:
a) $\mathrm{n}=4, l=3$: \qquad
b) $\mathrm{n}=3, l=1$: \qquad
c) c) $\mathrm{n}=2, l=0$: \qquad
d) d) $\mathrm{n}=5, l=4$: \qquad
4. Write the principal quantum number and letter indicating orbital shape for each of the following:
a) $\mathrm{n}=2, l=1$ \qquad c) $\mathrm{n}=4, l=3$
e) $\mathrm{n}=4, l=1$ \qquad
b) $\mathrm{n}=3, l=2$
d) $\mathrm{n}=1, l=0$
f) $\mathrm{n}=2, l=0$ \qquad
5. State whether the following sets of quantum numbers are possible () or impossible (X). Identify the values which are incorrect or impossible, if any.
a) $\mathrm{n}=3, l=3, \mathrm{~m}_{l}=-1$ and $\mathrm{m}_{s}=+1 / 2$
b) $\mathrm{n}=5, l=2, \mathrm{~m}_{l}=-1$ and $\mathrm{m}_{s}=-1 / 2$
c) $\mathrm{n}=2, l=0, \mathrm{~m}_{l}=0$ and $\mathrm{m}_{s}=-1 / 2$
d) $\mathrm{n}=3, l=1, \mathrm{~m}_{l}=0$ and $\mathrm{m}_{s}=0$
e) $\mathrm{n}=1, l=0, \mathrm{~m}_{l}=+1$ and $\mathrm{m}_{s}=+1 / 2$ \qquad
f) $\mathrm{n}=0, l=0, \mathrm{~m}_{l}=0$ and $\mathrm{m}_{s}=+1 / 2$ \qquad
g) $\mathrm{n}=4, l=1, \mathrm{~m}_{l}=+1$ and $\mathrm{m}_{s}=+1 / 2$ \qquad
h) $\mathrm{n}=2, l=1, \mathrm{~m}_{l}=-2$ and $\mathrm{m}_{s}=-1 / 2$
6. Read pages $133-138$.
7. On page 136, answer questions $1-5$.
8. On page 138 , answer questions $2,3,5,6$.
9. Read pages $147-150$.
10. To see how electron configurations are related to an element's position on the periodic table, write the name of the last valence electron of each element (eg. $3 \mathrm{~d}^{5}$) in the appropriate square of the Periodic Table below. Use the predicted electron configurations for $\mathrm{Cr}, \mathrm{Mo}, \mathrm{Cu}, \mathrm{Ag}$ and Au .
11. On the Periodic Table below, label the:
a) Group numbers and Periods
b) $\mathrm{s}, \mathrm{p}, \mathrm{d}$ and f blocks of elements
c) the transition elements and inner-transition elements
d) Noble gases, Alkali metals, Alkaline Earth metals, and Halogens

12. On the page "Nuclear Charge and the Shielding Effect: Explaining the Trends on the Periodic Table" (handed out in class), for each element complete the:
a) electron configuration
b) Rutherford-Bohr diagram
c) Nuclear charge (the number of protons in the nucleus = atomic number $=\mathrm{Z}$)
d) Shielding effect (the number of electrons in the full shells between the nucleus and the valence shell)
e) Net Nuclear attraction (the nuclear charge subtract the shielding effect). Net nuclear attraction is the effective ($\mathrm{Z}_{\text {eff }}$) or actual attraction that exists between a valence electron and the nucleus.
f) Use the numbers on the back of your Periodic Table to complete the ionization energy (First Ionization Potential, V), electronegativity and Atomic Radius (Δ, Angstroms)

Shielding Effect

Unit 1, Lesson 05: Trends on the Periodic Table

Refer to chart "Nuclear Charge and the Shielding Effect: Explaining the Trends on the Periodic Table".
Shielding effect (SE) is defined as the number of \qquad in the \qquad between the \qquad and the outer \qquad

- as the shielding effect increases, the valence electrons are \qquad from the \qquad ,
so the attraction between the nucleus and the valence electrons \qquad
- across each period (row \rightarrow), the shielding effect \qquad
- down each group (column), the shielding effect \qquad , so the attraction between the nucleus and electrons \qquad
Net nuclear attraction (aka. \qquad , \qquad) is
defined as the \qquad (__) subtract the \qquad
- $Z_{\text {eff }}$ represents the \qquad between the \qquad and the \qquad electrons
- as $\mathrm{Z}_{\text {eff }}$ increases, the valence electrons are pulled \qquad and \qquad to the \qquad
- across each period (row \rightarrow), $Z_{\text {eff }}$ \qquad
- down each group (column), $\mathrm{Z}_{\text {eff }}$ is \qquad

Trends across a period (\rightarrow) are explained by \qquad
Trends down a group (\downarrow) are explained by

1. Atomic Radius: one half the distance between the
\qquad of two of the same type of atom,
\qquad bonded together or as a \qquad under controlled conditions
a) down a group (\downarrow), atomic radius \qquad because
b) across a period (\rightarrow), atomic radius \qquad because

\qquad which pulls the valence electrons \qquad to the nucleus
$\frac{d}{2}=99 \mathrm{pm}$
$\frac{d}{2}=77 \mathrm{pm}$
2. First Ionization Energy (): the amount of energy required to remove the \qquad electron from a \qquad , \qquad atom
a) down a group $(\downarrow), \mathrm{IE}_{1}$ \qquad because \qquad so the valence electrons are \qquad from the nucleus and \qquad to remove
b) across a period $(\rightarrow), \mathrm{IE}_{1}$ \qquad because \qquad which holds the valence electrons \qquad to the nucleus
3. Electronegativity (): a measure of the relative \qquad that an atom has for the in a \qquad , compared to \qquad
a) down a group (\downarrow), EN \qquad because \qquad . The valence electrons are \qquad from the nucleus and \qquad attracted to it
b) across a period (\rightarrow), EN \qquad because \qquad . The valence electrons are \qquad to the nucleus
4. Electron Affinity (): is the change in \qquad that occurs when an electron is
\qquad to a \qquad , \qquad atom
a) metals and Noble gases: do \qquad another electron

- energy must be \qquad to make the electron "stick" so EA is \qquad
- down a group (\downarrow), EA \qquad (moves closer to \qquad) because \qquad and the \qquad for a new electron is \qquad
b) non-metals: \qquad another electron
- energy is \qquad when an electron is added so EA is \qquad
- across a period (\rightarrow), EA for non-metals \qquad (becomes \qquad and more
\qquad) because \qquad and the elements are closer to a

5. Ionic Radius: the radius of an ion
a) metal atoms \qquad electrons when they form ions

- they have \qquad electrons, so metal ions are \qquad than their parent atom
b) non-metal atoms \qquad electrons when they form ions
- they have \qquad electrons, so non-metal ions are \qquad than their parent atom

The ion with the protons and \qquad electrons will have the smallest radius.
eg. Put the following atoms and ions in order of increasing radius: $\quad \mathrm{P} \quad \mathrm{P}^{3+} \quad \mathrm{P}^{5+} \quad \mathrm{P}^{3-}$

6. Successive Ionization Energies

- multi-electron atoms can have many ionization energies as more and more electrons are \qquad
${ }_{11} \mathrm{Na} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1} \rightarrow$ \qquad

$$
\mathrm{IE}_{1}=5.1 \mathrm{eV}
$$

$$
{ }_{11} \mathrm{Na}^{1+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} \rightarrow \longrightarrow
$$

$$
\mathrm{IE}_{2}=47.3 \mathrm{eV}
$$

$$
{ }_{11} \mathrm{Na}^{2+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5} \rightarrow
$$

$$
\mathrm{IE}_{3}=71.7 \mathrm{eV}
$$

$$
{ }_{11} \mathrm{Na}^{3+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4} \rightarrow
$$

$$
\mathrm{IE}_{4}=98.8 \mathrm{eV}
$$

Notice:

- the IE for each successive ionization \qquad because we are removing an electron from a more and more \qquad ion
- there is a huge jump in energy to remove a \qquad electron (break a \qquad _)
- similarly, it also takes more energy to remove \qquad , \qquad , \qquad and \qquad electrons (any time you are breaking up a \qquad or \qquad energy sub-level)

Example: from the ionization energies for an unknown element, identify its group number:

$$
\begin{aligned}
& \mathrm{IE}_{1}=8.3 \mathrm{eV} \\
& \mathrm{IE}_{2}=25.1 \mathrm{eV} \\
& \mathrm{IE}_{3}=37.9 \mathrm{eV} \\
& \mathrm{IE}_{4}=259.3 \mathrm{eV} \\
& \mathrm{IE}_{5}=340.1 \mathrm{eV}
\end{aligned}
$$

Unit 1, Lesson 05: Homework on Periodic Trends

1. Read pages 152-157 in your text.
2. An atom of argon has 18 electrons while an atom of sodium has only 11 electrons. However, an atom of argon is SMALLER than an atom than sodium. Explain why this is true.
3. What three factors influence the magnitude of ionization energy?
4. Explain why lithium has a lower first ionization energy than fluorine.
5. Explain why potassium has a lower first ionization energy than lithium.
6. As a general rule, positive metal ions are smaller than their neutral metal atoms, while negative nonmetal ions are larger than their neutral non-metal atoms. Explain these patterns.
7. Put the following in order of increasing radius. Explain why you put them in this order:
a) $\mathrm{Mn}, \mathrm{Mn}^{2+}, \mathrm{Mn}^{4+}$
b) $\mathrm{P}^{3+}, \mathrm{P}^{3-}, \mathrm{P}, \mathrm{P}^{5+}$

First Ionization Energy vs. Atomic Number for the First 20 Elements

8. Refer to the graph above to answer the following questions:
a) What is significant about the IE_{1} for the Noble gas elements? Explain.
b) What is significant about the IE_{1} for the Alkali metal elements? Explain.
c) How do the IE_{1} for the Period 2 elements compare to those of Period 3? Explain.
d) The IE to remove a $2 s^{2}$ electron is higher than the IE to remove a $2 p^{1}$ electron. Explain.
e) The IE to remove a $2 p^{3}$ electron is higher than the IE to remove a $2 p^{4}$ electron. Explain.
9. The first eight ionization energies for phosphorus are shown in the table below:

ELEMENT		IE_{1}	IE_{2}	IE_{3}	IE_{4}	IE_{5}	IE_{6}	IE_{7}
		19.7	30.2	51.4	65.0	220.4	263.3	309.3

a) Write the first six ionization reactions for phosphorus. Include the ionization energy required for each reaction.
b) Explain why IE_{6} is so much higher than IE_{5}.
10. The successive ionization energies for four unknown elements are reported below. Prepare a graph showing ionization energy vs. successive ionization. (You can do one single graph or four separate graphs). For each element:
a) Identify which ionization reaction is breaking a stable octet electron arrangement.
b) How many valence electrons does each neutral atom have?
c) Identify which group on the Periodic Table each element is found in.

	IONIZATION ENERGIES (eV, Electron Volts)								
	IE_{1}	IE_{2}	IE_{3}	IE_{4}	IE_{5}	IE_{6}	IE_{7}	IE_{8}	
Unknown A	13.6	35.1	54.9	77.4	113.9	138.1	739.1	871.1	
Unknown B	13.0	23.8	39.9	53.5	67.8	96.7	114.3	348.3	
Unknown C	11.0	19.7	30.2	51.4	65.0	220.4	263.3	309.3	
Unknown D	6.0	18.8	28.4	120.0	153.8	190.4	241.9	285.1	

11. Answer questions $3,4,5,6 \mathrm{~b}, \mathrm{c}, \mathrm{g}, \mathrm{h}, 7$ and 8 on pages 157-158.
12. Explain the difference between electron affinity and electronegativity.
13. An atom has a large negative value for electron affinity. What type of atom would this be?
14. An atom has a large positive value for electron affinity. What type atom of would this be?
15. Summarize the trends on the Periodic Table for electronegativity, first ionization energy and atomic radius in a way that is meaningful to you. Be able to explain and apply each of these trends.
