Unit 1, Lesson 08: Answers to Homework on Variations of Covalent Bonding by the Octet Rule

- 1. Read pages 173 to 177.
- 2. Questions on page 177, questions 9 13. For questions 9 and 12, you do not need the "system".

- 4. The number of bonds is: 8 electrons in bonds)2 electrons per bond = 4 bonds
- 5. Skeleton structure: O (four bonds) II O - C - O

6. Draw in the lone pairs

- we *have* 24 valence electrons but 8 of these are bonded
- there are (24 8) = 16 electrons to be added as lone pairs

7. Complete the Lewis structure:

- add the lone pairs to complete stable octets for all atoms
- for ions, draw brackets and include the charge on the ion

Structure of CO_3^{2-} (continued)

- because there is one double bond and two single bonds between C and O, this molecule will form resonance structures:

Page 177, Question 10: **b) NO**¹⁺

1.	We have:	1 x 5 valence electron 1 x 6 valence electron charge of 1+ on the io	s for nitrogen s for oxygen n	= 5 $ = 6 $ $ = -1$	we <i>hav</i>	<i>e</i> 10 valence electrons
2.	We need:	1 x 8 valence electron 1 x 8 valence electron	s for nitrogen s for oxygen	= 8 = 8	we <i>need</i>	16 valence electrons
3.	The number of el	ectrons in bonds:	we <i>need</i> 16 va we <i>have</i> 10 va	alence elect alence elect	rons	(16 - 10) = 6 electrons must be shared in bonds

- 4. The number of bonds is: 6 electrons in bonds)2 electrons per bond = 3 bonds
- 5. Skeleton structure: $0 \equiv N$
- 6. Draw in the lone pairs
- we *have* 10 valence electrons but 6 of these are bonded
- there are (10 6) = 4 electrons to be added as lone pairs

7. Complete the Lewis structure:

- add the lone pairs to complete stable octets for all atoms
- for ions, draw brackets and include the charge on the ion
- because there is one only one triple bond, there are no resonance structures

- c) $C\ell O_3^{1-}$ chlorine is the central atom
- We have: 1 x 7 valence electrons for chlorine = 7 3 x 6 valence electrons for oxygen = 18 charge of 1- on the ion = 1
 We need: 1 x 8 valence electrons for chlorine = 8 3 x 8 valence electrons for oxygen = 24
 we need 32 valence electrons
- 3. The **number of electrons in bonds:** we *need* 32 valence electrons (32 26) = 6 electrons must be shared in bonds
- 4. The number of bonds is: 6 electrons in bonds)2 electrons per bond = 3 bonds
- 5. Skeleton structure: (three bonds)

$$o - cl - o$$

0

- 6. Draw **in the lone pairs**
- we *have* 26 valence electrons but 6 of these are bonded
- there are (26 6) = 20 electrons to be added as lone pairs
- 7. Complete the Lewis structure:
- add the lone pairs to complete stable octets for all atoms
- for ions, draw brackets and include the charge on the ion
- because there are only single bonds, there are no resonance structures

d) SO_3^{2-} The central atom is sulfur

- 4. The number of bonds is: 6 electrons in bonds)2 electrons per bond = 3 bonds
- 5. Skeleton structure: O (three bonds)

$$o = \frac{1}{s} = o$$

6. **Draw in the lone pairs**

- we *have* 26 valence electrons but 6 of these are bonded
- there are (26 6) = 20 electrons to be added as lone pairs

7. Complete the Lewis structure:

- add the lone pairs to complete stable octets for all atoms
- for ions, draw brackets and include the charge on the ion
- because there are only single bonds, there are no resonance structures

3. Draw Lewis structures for ozone (O₃), BrFO₃, NH₄¹⁺, NO₃¹⁻, NO₂¹⁻, CO, C ℓ F₂¹⁺, SeO₃²⁻. Include any resonance structures.

 NO_3^{1-} (because of the double bond and two single bonds, there are three resonance structures)

$$\begin{bmatrix} \vdots \vdots \vdots \vdots \\ \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - \vdots \\ N \\ - \vdots \\ N \\ - \vdots \end{bmatrix}^{1-} \begin{bmatrix} \vdots \\ N \\ - i \\ N \\ -$$

 NO_2^{1-} (because of the double bond and one single bond, there are two resonance structures)

$$\left[\ddot{\mathbf{0}} = \ddot{\mathbf{N}} - \ddot{\mathbf{0}} \vdots \right]^{1} \iff \left[\vdots \ddot{\mathbf{0}} - \ddot{\mathbf{N}} = \ddot{\mathbf{0}} \right]^{1}$$

CO
$$\operatorname{C\ellF_2^{1+}}$$
 $\operatorname{SeO_3^{2-}}$
: C = O: $\left(::F - CI - F:\right)^{1+}$ $\left(::O = I - CI - CI - F:\right)^{1+}$ $\left(:O = I - CI - CI - F:\right)^{2-}$