Unit 1, Lesson 08: Answers to Homework on Variations of Covalent Bonding by the Octet Rule

1. Read pages 173 to 177 .
2. Questions on page 177, questions $9-13$. For questions 9 and 12 , you do not need the "system".

Page 177, Question 9:
a) NH_{3}

d) AsH_{3}

e) BrO^{-}

f) $\mathrm{H}_{2} \mathrm{~S}$

g) $\mathrm{H}_{2} \mathrm{O}_{2}$

h) $\mathrm{C} \ell \mathrm{NO}$

(because N has the lowest EN, it is the central atom)

Page 177, Question 10
a) $\mathrm{CO}_{3}{ }^{2-}$ The central atom is carbon

1. We have:
$\left.\begin{array}{rl}\begin{array}{l}1 \times 4 \text { valence electrons for carbon }\end{array} & =4 \\ 3 \times 6 \text { valence electrons for oxygen } & =18 \\ \text { charge of 2- on the ion } & =2\end{array}\right\} \quad$ we have 24 valence electrons
2. We need: $\left.\quad \begin{array}{l}1 \times 8 \text { valence electrons for carbon }=8 \\ 3 \times 8 \text { valence electrons for oxygen }=24\end{array}\right\} \quad$ we need 32 valence electrons
3. The number of electrons in bonds: we need 32 valence electrons $\quad(32-24)=8$ electrons we have 24 valence electrons $\}$ must be shared in bonds
4. The number of bonds is: 8 electrons in bonds $) 2$ electrons per bond $=4$ bonds
5. Skeleton structure:
(four bonds)

6. Draw in the lone pairs

- we have 24 valence electrons but 8 of these are bonded
- there are $(24-8)=16$ electrons to be added as lone pairs

7. Complete the Lewis structure:

- add the lone pairs to complete stable octets for all atoms

$$
\binom{: 0:}{\because \ddot{o}-\mathrm{c}-\ddot{0}:}^{2}
$$

- for ions, draw brackets and include the charge on the ion

Structure of $\mathrm{CO}_{3}{ }^{2-}$ (continued)

- because there is one double bond and two single bonds between C and O , this molecule will form resonance structures:

Page 177, Question 10:
b) $\mathbf{N O}^{1+}$

1. We have: $\left.\quad \begin{array}{ll}1 \times 5 \text { valence electrons for nitrogen } & =5 \\ 1 \times 6 \text { valence electrons for oxygen } & =6 \\ \text { charge of } 1+\text { on the ion } & =-1\end{array}\right\} \quad$ we have 10 valence electrons
2. We need: $\left.\quad \begin{array}{l}1 \times 8 \text { valence electrons for nitrogen }=8 \\ 1 \times 8 \text { valence electrons for oxygen }=8\end{array}\right\} \quad$ we need 16 valence electrons
3. The number of electrons in bonds: we need 16 valence electrons $\quad(16-10)=6$ electrons we have 10 valence electrons $\}$ must be shared in bonds
4. The number of bonds is: 6 electrons in bonds $) 2$ electrons per bond $=3$ bonds
5. Skeleton structure: (three bonds)
$0 \equiv \mathrm{~N}$
6. Draw in the lone pairs

- we have 10 valence electrons but 6 of these are bonded
- there are $(10-6)=4$ electrons to be added as lone pairs

7. Complete the Lewis structure:

$$
(: 0 \equiv \mathrm{~N}:)^{1+}
$$

- add the lone pairs to complete stable octets for all atoms
- for ions, draw brackets and include the charge on the ion
- because there is one only one triple bond, there are no resonance structures
c) $\mathrm{ClO}_{3}{ }^{\mathbf{1 -}}$ chlorine is the central atom

1. We have:
$\left.\begin{array}{rlr}1 \times 7 \text { valence electrons for chlorine } & =7 \\ 3 \times 6 \text { valence electrons for oxygen } & =18 \\ \text { charge of } 1-\text { on the ion } & =1\end{array}\right\}$
we have 26 valence electrons
2. We need:

3. The number of electrons in bonds: we need 32 valence electrons $\quad(32-26)=6$ electrons we have 26 valence electrons $\}$ must be shared in bonds
4. The number of bonds is: 6 electrons in bonds $) 2$ electrons per bond $=3$ bonds
5. Skeleton structure: (three bonds)

6. Draw in the lone pairs

- add the lone pairs to complete stable octets for all atoms
- for ions, draw brackets and include the charge on the ion
- because there are only single bonds, there are no resonance structures
d) $\mathrm{SO}_{3}{ }^{2-}$ The central atom is sulfur

1. We have:
$\left.\begin{array}{ll}\begin{array}{l}1 \times 6 \text { valence electrons for sulfur }\end{array}=6 \\ \left.\begin{array}{ll}3 \times 6 \text { valence electrons for oxygen } & =18 \\ \text { charge of 2- on the ion } & =\end{array}\right\} \quad \text { we have } 26 \text { valence electrons }\end{array}\right\}$
2. We need: $\left.\quad \begin{array}{l}1 \times 8 \text { valence electrons for sulfur }=8 \\ 3 \times 8 \text { valence electrons for oxygen }=24\end{array}\right\} \quad$ we need 32 valence electrons
3. The number of electrons in bonds: we need 32 valence electrons $\quad(32-26)=6$ electrons we have 26 valence electrons $\}$ must be shared in bonds
4. The number of bonds is: 6 electrons in bonds $) 2$ electrons per bond $=3$ bonds
5. Skeleton structure: (three bonds)

6. Draw in the lone pairs

- we have 26 valence electrons but 6 of these are bonded
- there are $(26-6)=20$ electrons to be added as lone pairs

7. Complete the Lewis structure:

- add the lone pairs to complete stable octets for all atoms
- for ions, draw brackets and include the charge on the ion
- because there are only single bonds, there are no resonance structures

Page 177, Question 11 $\mathrm{CH}_{3} \mathrm{CFCl}_{2}$

the order of the F and $\mathrm{C} \ell$ on the second atom does not matter

Page 177, Question 12:
a) $\mathrm{N}_{2} \mathrm{H}_{4}$

b) $\mathrm{N}_{2} \mathrm{~F}_{2}$

Page 177, Question 13:
XeO_{4}

all four bonds in the XeO_{4} molecule must be coordinate covalent bonds
3. Draw Lewis structures for ozone $\left(\mathrm{O}_{3}\right), \mathrm{BrFO}_{3}, \mathrm{NH}_{4}{ }^{1+}, \mathrm{NO}_{3}{ }^{1-}, \mathrm{NO}_{2}{ }^{1-}, \mathrm{CO}, \mathrm{ClF}_{2}{ }^{1+}, \mathrm{SeO}_{3}{ }^{2-}$. Include any resonance structures.

Ozone (O_{3})

BrFO_{3}

$\mathrm{NH}_{4}{ }^{1+}$
$(\mathbf{H}-\underset{\mathrm{H}}{\mathrm{I}} \underset{\mathrm{I}}{\mathrm{I}}-\mathbf{H})^{1+}$
$\mathrm{NO}_{3}{ }^{1-}$ (because of the double bond and two single bonds, there are three resonance structures)

$\mathrm{NO}_{2}{ }^{1-}$ (because of the double bond and one single bond, there are two resonance structures)

CO

$$
\mathrm{ClF}_{2}^{1+} \quad \mathrm{SeO}_{3}^{2-}
$$

$$
: \mathrm{c} \equiv \mathrm{o}: \quad(\because \ddot{\mathrm{e}}-\ddot{\mathrm{c}}-\ddot{\mathrm{E}}:]^{1+}\left(\begin{array}{c}
: \ddot{\mathrm{o}}: \\
1 \\
: \ddot{0}-\stackrel{\mathrm{s}}{\mathrm{e}}-\ddot{\mathrm{o}}:
\end{array}\right)^{2-}
$$

