Lewis structures are two-dimensional representations of molecules; however, most molecules are threedimensional. A molecule's shape depends on the number of bonded pairs (BP) and lone pairs (LP) around the central atom.

Dr. Gillespie at McMaster University in Hamilton developed the VSEPR Theory to explain the shapes of molecules. He was one of Mrs. Chiasson's chemistry professors.

VSEPR (pronounced "vesper") stands for <u>V</u>alence <u>S</u>hell <u>E</u>lectron <u>P</u>air <u>R</u>epulsion Theory:

• states that the shape of a molecule depends on the repulsion between the electron pairs in the valence shell around the molecule's central atom

:Cl:

- electron pairs can be either bonded pairs (BP, single, double and triple bonds are all treated as one "bonded pair") or lone pairs (LP) around the central atom
- the electron pairs will repel each other so they are as far apart as possible
- lone pairs spread out and take up more room than bonded pairs so they will push the bonded atoms closer together

The number of bonded pairs and lone pairs around a central atom is determined from the Lewis diagram for the molecule and can be written using the general VSEPR notation:

eg. $CC\ell_4$ has the Lewis structure:

eg. O_3 has the Lewis structure:

- the central atom has 4 BP and 0 LP
- in VSEPR notation we would write:

AX₄E₀

- the central atom has 3 BP and 2 LP
- in VSEPR notation we would write:

- the central atom has 2 BP and 1 LP
- in VSEPR notation we would write:

AX₂E₁

The Lewis structure determines the number of bonded pairs and lone pairs on the central atom. The number of bonded pairs and lone pairs on the central atom determines the shape of the molecule.

The shapes of molecules are grouped by the # of BP + # of LP around the central atom:

4. # of BP + # of LP on the central atom = 5 (expanded valence)

- a) 5 BP and no LP, VSEPR notation: AX₅E₀
- the five BP spread out as far as possible
- the X A X bond angle between the two axial atoms is 180°
- the X A X bond angle between the three equatorial atoms is 120°
- the basic shape is trigonal bipyramidal
- eg. $PC\ell_5$ SOF₄ $C\ell F_3O_2$

- b) 4 BP and one LP, VSEPR notation: AX_4E_1
- the four BP spread out as far as possible
- it is lower energy if the lone pair is found in an equatorial position
- the lone pair will push the remaining equatorial atoms closer together, so the equatorial X A X bond angle is $<120^{\circ}$
- the basic shape is "seesaw"

- c) 3 BP and two LP, VSEPR notation: AX₃E₂
- the three BP spread out as far as possible
- it is lower energy if the two lone pairs are found in equatorial positions
- the basic shape is "T-shaped"
- eg. Br F_3 IC ℓ_3 C ℓF_3

Trigonal bipyramidal

Х

Х

120°

:0:

Π

П

:0:

:0:

Seesaw

Х

< 180°

<120°

Х

VSEPR Summary

To predict the shape of a molecule:

- 1. Draw the Lewis structure for the molecule.
- 2. Count the number of bond pairs (BP) and lone pairs (LP) around the central atom.
- 3. Decide on the total number of electron groups (treat multiple bonds as single electron groups).
- 4. Consider the locations of lone pairs and any distortions from "regular" shapes.
- 5. Name the shape based on the arrangement of the bonding **atoms** as outlined below:
- a) If the total number of electron groups (bond pairs + lone pairs) is **TWO**:
- two bond pairs and no lone pairs (): the molecule is linear

 b) If the total number of electron groups (both three bond pairs and no lone pairs (two bond pairs and one lone pair (<pre>ond pairs + lone pairs) is THREE:): the molecule is trigonal planar): the molecule is bent or V-shaped</pre>	Trigonal Planar or Variation
 c) If the total number of electron groups (bo four bond pairs and no lone pairs (three bond pairs and one lone pair (two bond pairs and two one pairs (<pre>ond pairs + lone pairs) is FOUR:): the molecule is tetrahedral): the molecule is trigonal pyrimidal): the molecule is bent or V-shaped </pre>	Tetrahedral or Modified Tetrahedral
 d) If the total number of electron groups (both five bond pairs and no lone pairs (four bond pairs and one lone pair (three bond pairs and two lone pairs (two bond pairs and three lone pairs (<pre>ond pairs + lone pairs) is FIVE:): the molecule is trigonal bipyramidal): the molecule is a "see-saw" shape): the molecule is "T-shaped"): the molecule will be linear</pre>	Trigonal Bipyramidal or Modified Trigonal Bipyramidal
 e) If the total number of electron groups (bo six bond pairs and no lone pairs (five bond pairs and one lone pair (four bond pairs and two lone pairs (ond pairs + lone pairs) is SIX:): the molecule is octahedral): the molecule is a square-based pyramid): the molecule is square planar 	Octahedral or Modified Octahedral

- four bond pairs and two lone pairs (): the molecule is square planar

Homework:

1. Read pages178 to 185

2. Identify the molecular shape associated with the following VSEPR notations

	0
a) AX_5E_1	e) AX_6E_0
b) AX ₃ E ₀	f) AX_3E_2
c) AX_4E_2	g) AX ₃ E ₁
d) AX_2E_1	h) AX_5E_0
e) AX_4E_1	i) AX_4E_0
f) AX ₂ E ₂	j) AX ₂ E ₃

3. On pages 185 – 186, do questions 18 to 21 (refer to the examples on pages 184 to 185)

of Total # of # of bonded Lewis General unbonded ee- groups e-pairs Structure Formula (BP + LP)(BP) pairs (lone (use A as the Diagram and Name of Molecular Shape Example (VSEPR in valence around pairs, LP) central atom notation) level of central around and X as the AX_nE_m central atom atom central atom bonded (basic shape) (X) (E) atoms) BeCℓ₂ CO_2 2 HCN BCl₃ 120° CH_2O 3 BF₃ 120 **O**₃ NO_2^{1-} 3 $CC\ell_4$ $\mathrm{NH_4}^+$ 109° 4 $C\ell O_4^{1-}$ NH₃ PF₃ 4 $C\ell O_2F$ H_2O OF_2 4 ${I_3}^{1+}$

VSEPR Theory and Molecular Shape

* when determining molecular shape, a double or triple bond is a single electron group. Treat multiple bonds as a single bonded pair (BP)

Total # of e- groups (BP + LP) in valence level of central atom (basic shape)	# of bonded e- pairs (BP) around central atom (X)	# of unbonded e- pairs (lone pairs, LP) around central atom (E)	General Formula	Lewis Structure	Diagram and Name of Molecular Shape	Example
5					90° 5120° ← equatorial atom	PCℓ5 CℓF3O2 SOF4
5					90° nonbonding electron pair	SF_4 $IF_2O_2^{1-}$ BrF_4^{1+}
5					90° electron pairs	BrF ₃ ICℓ ₃
5					electron pairs	XeF_2 I_3^{1-} $IC\ell_2^{1-}$
6					90°	SF ₆ IOF ₅ CℓF ₆ ¹⁺
6						BrF ₅ XeOF ₄ IOF ₄ ¹⁻
6					8-0-8 	$ \begin{aligned} XeF_4 \\ BrF_4^{1-} \\ IC\ell_4^{1-} \end{aligned} $