Unit 1, Lesson 10: VSEPR Theory and Molecular Shape http://www.chem.ufl.edu/~chm2040/Notes/Chapter_11/shapes.html

Lewis structures are two-dimensional representations of molecules; however, most molecules are threedimensional. A molecule's shape depends on the number of bonded pairs (BP) and lone pairs (LP) around the central atom.

Dr. Gillespie at McMaster University in Hamilton developed the VSEPR Theory to explain the shapes of molecules. He was one of Mrs. Chiasson's chemistry professors.

VSEPR (pronounced "vesper") stands for $\underline{\text { Valence }} \underline{\text { Shell }} \underline{\text { Electron }} \underline{\text { Pair }} \underline{\text { Repulsion Theory: }}$

- states that the shape of a molecule depends on the repulsion between the electron pairs in the valence shell around the molecule's central atom
- electron pairs can be either bonded pairs (BP, single, double and triple bonds are all treated as one "bonded pair") or lone pairs (LP) around the central atom
- the electron pairs will repel each other so they are as far apart as possible
- lone pairs spread out and take up more room than bonded pairs so they will push the bonded atoms closer together

The number of bonded pairs and lone pairs around a central atom is determined from the Lewis diagram for the molecule and can be written using the general VSEPR notation:

\# of bonded pairs (BP) attached to the central atom. Single, double and triple bonds are all treated as a single bonded pair
eg. CC_{4} has the Lewis structure:

- the central atom has 3 BP and 2 LP
- in VSEPR notation we would write:
$\mathbf{A X}_{3} \mathbf{E}_{\mathbf{2}}$
- the central atom has 2 BP and 1 LP
- in VSEPR notation we would write:

$$
\ddot{̣}=\ddot{o}-\ddot{o}:
$$

$\mathrm{AX}_{2} \mathrm{E}_{1}$

The Lewis structure determines the number of bonded pairs and lone pairs on the central atom.
The number of bonded pairs and lone pairs on the central atom determines the shape of the molecule.

The shapes of molecules are grouped by the \# of BP + \# of LP around the central atom:

1. \# of $\mathrm{BP}+\#$ of LP on the central atom $=2$

- VSEPR notation: $\mathbf{A} \mathbf{X}_{2} \mathbf{E}_{\mathbf{0}}$
- the two BP spread out as far as possible
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle is 180°
- the basic shape is linear

eg. $\mathrm{BeCl}_{2} \mathrm{HCN} \quad \mathrm{CS}_{2}$ and CO_{2}
(remember, a multiple bond is treated as a one electron group)
$: \stackrel{\bullet-}{\mathrm{Cl}}-\mathrm{Be}-\underset{\bullet-}{\ddot{\mathrm{Cl}}: ~}$
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}:$

$$
\ddot{\bullet}=c=\dot{0}
$$

2. \# of BP + \# of LP on the central atom = 3
a) 3 BP and no LP, VSEPR notation: $\mathbf{A X}_{\mathbf{3}} \mathbf{E}_{\mathbf{0}}$

- the three BP spread out as far as possible
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle is 120°
- the basic shape is trigonal planar
eg. $\mathrm{BF}_{3} \quad \mathrm{CH}_{2} \mathrm{O}$ and $\mathrm{NO}_{3}{ }^{1-}$

b) 2 BP and one LP, VSEPR notation: $\mathbf{A X}_{2} \mathbf{E}_{\mathbf{1}}$
- the two BP are pushed closer together by the lone pair
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle is $<120^{\circ}$
- the basic shape is bent or V-shaped eg. O_{3} and $\mathrm{NO}_{2}{ }^{1-}$

3. \# of BP + \# of LP on the central atom =4
a) 4 BP and no LP, VSEPR notation: $\mathbf{A X}_{\mathbf{4}} \mathbf{E}_{\mathbf{0}}$

- the four BP spread out as far as possible
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle is 109.5°
- the basic shape is tetrahedral
eg. $\mathrm{CH}_{4} \quad \mathrm{CF}_{4} \quad \mathrm{SiCl}_{4}$ and SnCl_{4}

b) 3 BP and one LP, VSEPR notation: $\mathbf{A X}_{\mathbf{3}} \mathbf{E}_{\mathbf{1}}$
- the three BP spread out as far as possible
- the three BP are pushed closer together by the lone pair
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle is $<109.5^{\circ}$
- the basic shape is trigonal pyramidal
eg. $\mathrm{NH}_{3} \quad \mathrm{PF}_{3} \quad \mathrm{ClO}_{2} \mathrm{~F}$ and AsCl_{3}

Trigonal pyramidal

107.3°

c) 2 BP and two LP, VSEPR notation: $\mathbf{A X}_{2} \mathbf{E}_{\mathbf{2}}$

- the two BP spread out as far as possible
- the two BP are pushed closer together by two lone pairs
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle is $<109.5^{\circ}$
- the basic shape is bent or V-shaped
eg. $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{OF}_{2} \quad \mathrm{H}_{2} \mathrm{~S}$ and SF_{2}

4. \# of BP + \# of LP on the central atom = 5 (expanded valence)
a) 5 BP and no LP, VSEPR notation: $\mathbf{A X}_{\mathbf{5}} \mathbf{E}_{\mathbf{0}}$

- the five BP spread out as far as possible
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle between the two axial atoms is 180°
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle between the three equatorial atoms is 120°
- the basic shape is trigonal bipyramidal eg. $\mathrm{PCl}_{5} \quad \mathrm{SOF}_{4} \quad \mathrm{C}^{2} \mathrm{~F}_{3} \mathrm{O}_{2}$

b) 4 BP and one LP, VSEPR notation: $\mathbf{A X}_{4} \mathbf{E}_{\mathbf{1}}$
- the four BP spread out as far as possible
- it is lower energy if the lone pair is found in an equatorial position
- the lone pair will push the remaining equatorial atoms closer together, so the equatorial $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle is $<120^{\circ}$
- the basic shape is "seesaw"

$$
\text { eg. } \mathrm{SF}_{4} \quad \mathrm{IF}_{2} \mathrm{O}_{2}{ }^{1-} \quad \mathrm{IOF}_{3} \quad \mathrm{BrF}_{4}{ }^{1+}
$$

c) 3 BP and two LP, VSEPR notation: $\mathbf{A X}_{\mathbf{3}} \mathbf{E}_{\mathbf{2}}$

- the three BP spread out as far as possible
- it is lower energy if the two lone pairs are found in equatorial positions
- the basic shape is "T-shaped"
eg. $\mathrm{BrF}_{3} \quad \mathrm{ICl}_{3} \quad \mathrm{ClF}_{3}$

5. \# of BP + \# of LP on the central atom = 6 (expanded valence)
a) 6 BP and no LP, VSEPR notation: $\mathbf{A X}_{\mathbf{6}} \mathbf{E}_{\mathbf{0}}$

- the six BP spread out as far as possible
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angle between all atoms is 90°
- the basic shape is "octahedral"

eg. $\mathrm{SF}_{6} \quad \mathrm{IOF}_{5} \quad \mathrm{ClF}_{6}{ }^{1+} \mathrm{SiF}_{6}{ }^{2-}$

b) 5 BP and one LP, VSEPR notation: $\mathbf{A X}_{\mathbf{5}} \mathbf{E}_{\mathbf{1}}$
- the five BP spread out as far as possible
- the lone pair is found in one corner of the octahedral
- the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ bond angles are very close to 90°
- the basic shape is "square-based pyramid"
eg. $\mathrm{BrF}_{5} \quad \mathrm{XeOF}_{4} \quad \mathrm{IOF}_{4}{ }^{1-} \quad \mathrm{IC} \ell_{5}$

Scuare pyrsonidal

c) 4 BP and two LP, VSEPR notation: $\mathbf{A X}_{\mathbf{4}} \mathbf{E}_{\mathbf{2}}$

- the four BP spread out as far as possible
- the lone pairs are found above and below the plane of the bonded atoms
- the basic shape is square planar
eg. $\mathrm{XeF}_{4} \quad \mathrm{BrF}_{4}{ }^{1-} \quad \mathrm{ICl}_{4}{ }^{1-}$

VSEPR Summary

To predict the shape of a molecule:

1. Draw the Lewis structure for the molecule.
2. Count the number of bond pairs (BP) and lone pairs (LP) around the central atom.
3. Decide on the total number of electron groups (treat multiple bonds as single electron groups).
4. Consider the locations of lone pairs and any distortions from "regular" shapes.
5. Name the shape based on the arrangement of the bonding atoms as outlined below:
a) If the total number of electron groups (bond pairs + lone pairs) is TWO:

- two bond pairs and no lone pairs (): the molecule is linear
b) If the total number of electron groups (bond pairs + lone pairs) is THREE:
- three bond pairs and no lone pairs (
): the molecule is trigonal planar
- two bond pairs and one lone pair (): the molecule is bent or V-shaped
c) If the total number of electron groups (bond pairs + lone pairs) is FOUR:
- four bond pairs and no lone pairs (
): the molecule is tetrahedral
- three bond pairs and one lone pair (): the molecule is trigonal pyrimidal
- two bond pairs and two one pairs (
): the molecule is bent or V-shaped
d) If the total number of electron groups (bond pairs + lone pairs) is FIVE:
- five bond pairs and no lone pairs (
): the molecule is trigonal bipyramidal
- four bond pairs and one lone pair (
): the molecule is a "see-saw" shape
- three bond pairs and two lone pairs (
- two bond pairs and three lone pairs (): the molecule is "T-shaped"
e) If the total number of electron groups (bond pairs + lone pairs) is SIX:
- six bond pairs and no lone pairs (
- five bond pairs and one lone pair (
- four bond pairs and two lone pairs (
): the molecule is octahedral
): the molecule is a square-based pyramid): the molecule is square planar

Trigonal Planar or Variation

Tetrahedral

 or Modified Tetrahedral
Trigonal

Bipyramidal or Modified Trigonal Bipyramidal

Octahedral or Modified Octahedral

Homework:

1. Read pages 178 to 185
2. Identify the molecular shape associated with the following VSEPR notations

a) $\mathrm{AX}_{5} \mathrm{E}_{1}$	e) $\mathrm{AX}_{6} \mathrm{E}_{0}$
b) $\mathrm{AX}_{3} \mathrm{E}_{0}$	f) $\mathrm{AX}_{3} \mathrm{E}_{2}$
c) $\mathrm{AX}_{4} \mathrm{E}_{2}$	g) $\mathrm{AX}_{3} \mathrm{E}_{1}$
d) $\mathrm{AX}_{2} \mathrm{E}_{1}$	h) $\mathrm{AX}_{5} \mathrm{E}_{0}$
e) $\mathrm{AX}_{4} \mathrm{E}_{1}$	i) $\mathrm{AX}_{4} \mathrm{E}_{0}$
f) $\mathrm{AX}_{2} \mathrm{E}_{2}$	j) $\mathrm{AX}_{2} \mathrm{E}_{3}$

3. On pages $185-186$, do questions 18 to 21 (refer to the examples on pages 184 to 185)

VSEPR Theory and Molecular Shape

Total \# of e- groups (BP + LP) in valence level of central atom (basic shape)	\# of bonded e- pairs (BP) around central atom (X)	\# of unbonded e- pairs (lone pairs, LP) around central atom (E)	General Formula (VSEPR notation) $\mathrm{AX}_{\mathrm{n}} \mathrm{E}_{\mathrm{m}}$	Lewis Structure (use A as the central atom and X as the bonded atoms)	Diagram and Name of Molecular Shape	Example
2						$\begin{aligned} & \mathrm{BeCl}_{2} \\ & \mathrm{CO}_{2} \\ & \mathrm{HCN} \end{aligned}$
3						$\begin{aligned} & \mathrm{BCl}_{3} \\ & \mathrm{CH}_{2} \mathrm{O} \\ & \mathrm{BF}_{3} \end{aligned}$
3						$\begin{aligned} & \mathrm{O}_{3} \\ & \mathrm{NO}_{2}{ }^{1-} \end{aligned}$
4						$\begin{aligned} & \mathrm{CCl}_{4} \\ & \mathrm{NH}_{4}{ }^{+} \\ & \mathrm{ClO}_{4}{ }^{1-} \end{aligned}$
4						NH_{3} PF_{3} $\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~F}$
4						$\begin{aligned} & \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OF}_{2} \\ & \mathrm{I}_{3}{ }^{1+} \end{aligned}$

[^0]| Total \# of e- groups (BP + LP) in valence level of central atom (basic shape) | \# of bonded
 e- pairs (BP) around central atom (X) | \# of unbonded e- pairs (lone pairs, LP) around central atom (E) | General
 Formula | Lewis Structure | Diagram and Name of Molecular Shape | Example |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | | | | | | $\begin{aligned} & \mathrm{PCl}_{5} \\ & {\mathrm{C} F_{3} \mathrm{O}_{2}} \\ & \mathrm{SOF}_{4} \end{aligned}$ |
| 5 | | | | | | $\begin{aligned} & \mathrm{SF}_{4} \\ & \mathrm{IF}_{2} \mathrm{O}_{2}{ }^{1-} \\ & \mathrm{BrF}_{4}{ }^{1+} \end{aligned}$ |
| 5 | | | | | | $\begin{aligned} & \mathrm{BrF}_{3} \\ & \mathrm{IC}_{3} \end{aligned}$ |
| 5 | | | | | | $\begin{aligned} & \mathrm{XeF}_{2} \\ & \mathrm{I}_{3}{ }^{1-} \\ & \mathrm{ICl}_{2}{ }^{1-} \end{aligned}$ |
| 6 | | | | | | $\begin{aligned} & \mathrm{SF}_{6} \\ & \mathrm{IOF}_{5} \\ & \mathrm{C}_{5}{ }^{1+} \end{aligned}$ |
| 6 | | | | | | $\begin{aligned} & \mathrm{BrF}_{5} \\ & \mathrm{XeOF}_{4} \\ & \mathrm{IOF}_{4}{ }^{1-} \end{aligned}$ |
| 6 | | | | | | $\begin{aligned} & \mathrm{XeF}_{4} \\ & \mathrm{BrF}_{4}{ }^{1-} \\ & \mathrm{IC} \mathrm{\ell}_{4}{ }^{1-} \end{aligned}$ |

[^0]: * when determining molecular shape, a double or triple bond is a single electron group. Treat multiple bonds as a single bonded pair (BP)

