In Lesson 7 we reviewed the polarity of bonds.
If the difference in electronegativity between the bonding atoms is:

<0.50	pure covalent bond: the electrons are essentially equally shared between the bonding atoms
0.50 to 1.70	polar covalent bond: the electrons are shifted toward the more electronegative atom, creating small or partial charges, $\delta-$ and $\delta+$
>1.70	ionic bond: the electrons are essentially removed from the metal and shifted to the non- metal, creating full ionic charges

Polar bonds are said to have a "dipole moment" or a dipole because the poles (ends) of the bond have different partial charges. The electrons are shifted toward the element with higher electronegativity.

If a molecule is diatomic (contains only two atoms), such as HCl or NO , then the polarity of the bond is also the polarity of the molecule.

A molecule can contain polar bonds, but the overall molecule may be non-polar. That is, the polarity of bonds can be quite different than the polarity of the molecule that contains those bonds.

The polarity of molecules depends on both:

1. the polarity of the bonds in the molecule, and
2. the shape and symmetry of the molecule
eg. carbon dioxide $\left(\mathrm{CO}_{2}\right)$

- the Lewis structure for CO_{2} is:
- the VSEPR notation for CO_{2} is $\mathrm{AX}_{2} \mathrm{E}_{0}$, it is a linear molecule
- the $\Delta \mathrm{EN}$ for the $\mathrm{C}-\mathrm{O}$ bond is 0.89 , so the $\mathrm{C}-\mathrm{O}$ bond is polar
- however, the CO_{2} molecule is perfectly symmetrical

- the polar bonds are pulling equally on the bonded electrons, but in opposite directions as shown by the vector diagrams
- the dipoles cancel each other out
- carbon dioxide contains two polar bonds, but the overall molecule is non-polar because the polarity of the bonds cancel out
- CO_{2} is a non-polar molecule which explains why it is a gas at SATP

If a molecule is symmetrical in ALL planes, the dipole moments of any polar bonds will cancel out and the overall molecule will be non-polar.

If a molecule is asymmetrical, the dipole moments of any polar bonds will not cancel out, and the overal molecule will be polar.
eg. CSO

- the Lewis structure for CSO is shown to the right
- the VSEPR notation for CSO is $\mathrm{AX}_{2} \mathrm{E}_{0}$, it is a linear molecule
- the $\Delta \mathrm{EN}$ for the $\mathrm{C}-\mathrm{O}$ bond is 0.89 , so the $\mathrm{C}-\mathrm{O}$ bond is polar
- the $\Delta \mathrm{EN}$ for the $\mathrm{C}-\mathrm{S}$ bond is 0.03 , so the $\mathrm{C}-\mathrm{S}$ bond is non-polar

- the CSO molecule is not symmetrical
- the polar $\mathrm{C}-\mathrm{O}$ bond pulls the bonding pairs toward the O , while the non-polar $\mathrm{C}-\mathrm{S}$ bond can not offset this (as shown in the vector diagram)
- this gives the molecule a net dipole moment and it is a polar molecule
- because this is a polar molecule, we would predict that its melting and boiling points will be higher than for CO_{2} (and they are)
eg. BF_{3} (boron trifluoride)
- Lewis structure is shown to the right
- the VSEPR notation for BF_{3} is $\mathrm{AX}_{3} \mathrm{E}_{0}$
- the shape of the molecule is trigonal planar
- the $\Delta \mathrm{EN}$ for the $\mathrm{B}-\mathrm{F}$ bond is 1.94 , so the $\mathrm{B}-\mathrm{F}$ bond is very polar
- however, the molecule is symmetrical, so the dipole moments are pulling equally in opposite directions

the dipoles cancel out and BF_{3} is a non-polar molecule
eg. NH_{3} (ammonia)
- Lewis structure is shown to the right:
- the VSEPR notation for NH_{3} is $\mathrm{AX}_{3} \mathrm{E}_{1}$
- the shape of the molecule is trigonal pyramidal
- the $\Delta E N$ for the $\mathrm{N}-\mathrm{H}$ bond is 0.86 , so the $\mathrm{N}-\mathrm{H}$ bond is polar
- the ammonia molecule is asymmetrical, it has a lone pair at one point of the tetrahedral
- because the molecule is asymmetrical, the dipole moments will not cancel out and NH_{3} is a polar molecule
 out

eg. $\mathrm{H}_{2} \mathrm{O}$ (water)
- Lewis structure is shown to the right:
- the VSEPR notation for $\mathrm{H}_{2} \mathrm{O}$ is $\mathrm{AX}_{2} \mathrm{E}_{2}$
- the shape of the molecule is bent
- the $\Delta \mathrm{EN}$ for the $\mathrm{O}-\mathrm{H}$ bond is 1.24 , so the $\mathrm{O}-\mathrm{H}$ bond is polar
- the $\mathrm{H}_{2} \mathrm{O}$ molecule is not symmetrical in ALL planes
- because the molecule is asymmetrical, the dipole moments will not cancel out and $\mathrm{H}_{2} \mathrm{O}$ is a polar molecule

