Unit #6, Chapter 9 Outline Solubility Equilibria | Lesson | Topics Covered | Homework Questions and Assignments | |--------|--|--| | 1 | Solubility: • definition • solubility rules (memorize them) Ksp: • dissociation equations • Ksp expressions | 1. Read pages $430 - 431$
2. On page 432 , do questions $9 - 12a$.
Answers on page 455 are correct except:
Q10 should be Ag_2CO_3 (s) $\leftrightarrow 2Ag^+$ (aq) $+ CO_3^{2^-}$ (aq)
Q11 charge on PO ₄ ion is 3-, so it should be:
MgNH ₄ PO ₄ (s) \leftrightarrow Mg ⁺² (aq) $+$ NH ₄ ⁺ (aq) $+$ PO ₄ ³⁻ (aq) | | 2 | Solubility Calculations: given Ksp, calculate solubility given solubility, calculate Ksp | Read pages: 432 - 436 On page 433, do questions 13 - 15 (answer on page 455 for Q13 should be 2.3 x 10⁻¹⁶) On page 436, do questions 17a,b, 18 - 20 (Note: a "formula unit" means 1 "molecule") n = # particles (molecules)
6.02 x 10²³ particles/mol | | 3 | The Common Ion Effect | Read pages: 436 – 438 On page 439, do questions 21 – 24 (answer to Q 23b should be 2.0 x 10⁻⁴) Write the full and net ionic equations that occur when the following solutions are mixed: a) FeCl₃ (aq) and NH₄OH (aq) b) LiIO₃ (aq) and Ba(NO₃)₂ (aq) c) KSCN (aq) and PdCl₂ (aq) d) AgCH₃COO (aq) and H₂CrO₄ (aq) | | 4 | Ksp and Precipitation Reactions sample calculations dilution (C₁V₁ = C₂V₂) trial ion product, Qsp if Qsp > Ksp, a precipitate will form | Read pages 443 – 447 On page 446, do questions 31 and 32 On page 447, do questions 33 – 36 (Note: for Q33, Ksp of PbCl₂ = 1.7 x 10⁻⁵ from page 437, answer should be 9.3 x 10⁻⁸) Begin Review 7: Solubility Equilibria (on Internet) |