1. Calculate the pH of the following solutions:
a) $0.025 \mathrm{M} \mathrm{LiOH}(\mathrm{aq})$

LiOH is a strong base, from Group I $\therefore\left[\mathrm{OH}^{1-}\right]=[\mathrm{LiOH}]$

b) $\mathbf{3 . 0 0} \mathrm{HI}(\mathbf{a q})$

HI is a strong acid $\therefore\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=[\mathrm{HI}]$

c) $\quad 0.060 \mathrm{MBa}(\mathrm{OH})_{2}(\mathbf{a q})$
$\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base, from Group II $. \therefore\left[\mathrm{OH}^{1-}\right]=2 \mathrm{x}\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=0.12 \mathrm{M}$

\[

\]

d) $5.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{a q})$
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid $\therefore\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$
remember, only the first proton ($\mathrm{H}+$) in $\mathrm{H}_{2} \mathrm{SO}_{4}$ ionizes significantly unless the acid is very dilute

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{1+}\right] \\
& =-\log [5.00] \\
& =-0.699
\end{aligned}
$$

3 sig digs in the concentration gives 3 decimals in the pH

e) 25 mL of $15.0 \mathrm{M} \mathrm{HNO}_{3}$ stock solution diluted to 1.0 L of solution

Calculate the concentration of the diluted acid using the dilution equation: $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$

* both volumes must be in the same units, convert 25 mL to L by dividing by 1000

$$
\begin{aligned}
& \mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} \\
& 0.025 \mathrm{~L} \times 15.0 \mathrm{M}=\mathrm{C}_{2} \times 1.0 \mathrm{~L} \\
& \mathrm{C}_{2}=\underline{0.025 \mathrm{~L} \times 15.0 \mathrm{M}} \\
& 1.0 \mathrm{~L} \\
& =0.375 \mathrm{M} \\
& \mathrm{HNO}_{3} \text { is a strong acid, therefore: } \\
& {\left[\mathrm{H}_{3} \mathrm{O}+\right]=\left[\mathrm{HNO}_{3}\right]=\mathrm{C}_{2}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{1+}\right] \\
& =-\log [0.375] \\
& =0.43 \\
& 2 \text { sig digs } \\
& \text { in the } \\
& \text { concentration } \\
& \text { gives } 2 \\
& \text { decimals in } \\
& \text { the } \mathrm{pH}
\end{aligned}
$$

f) $3.66 \mathbf{g}$ of $\mathbf{N a O H}$ dissolved in 400.0 mL of solution

$3.66 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol}}{40.00 \mathrm{~g}}=0.09150 \mathrm{~mol}$

$$
\begin{aligned}
& \mathrm{c}=\underline{\mathrm{n}} \\
& \mathrm{~V} \\
&=\frac{0.0915 \mathrm{~mol}}{0.4000 \mathrm{~L}}
\end{aligned}
$$

$=0.22875 \mathrm{M}$

NaOH is a strong base, from Group I

$$
\therefore\left[\mathrm{OH}^{1-}\right]=[\mathrm{NaOH}]
$$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{1-}\right]
$$

$$
=-\log [0.22875]
$$

$$
=0.64064
$$

$$
\mathrm{pH}=14-\mathrm{pOH}
$$

$$
=14-0.64064
$$

$$
=13.359 \quad(3 \text { decimal places })
$$

g) $\mathbf{5 0 0 . 0} \mathbf{~ m L}$ of $6.00 \mathbf{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}}$ solution diluted to $\mathbf{3 . 0 0} \mathrm{L}$ of solution

Calculate the concentration of the diluted acid using the dilution equation: $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$

* both volumes must be in the same units, convert 500.0 mL to L by dividing by 1000

h) 8.55 g of solid $\mathrm{Mg}(\mathrm{OH})_{2}$ dissolved in 2.00 L of solution

$$
8.55 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol}}{58.33 \mathrm{~g}}=0.1465798 \mathrm{~mol}
$$

$$
\begin{array}{ll}
\mathrm{c}=\underline{\mathrm{n}} \\
=\frac{\mathrm{V}}{2.00 \mathrm{~L}} & \begin{array}{l}
\mathrm{Mg}(\mathrm{OH})_{2} \text { is a strong base, from Group II } \\
\therefore\left[\mathrm{OH}^{1-}\right]=2 \mathrm{x}\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]
\end{array} \\
=0.07329 \mathrm{M} & \\
& =0.14658 \mathrm{M} \\
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{1-}\right] \\
& =-\log [0.14658] \\
& =0.83393 \\
\mathrm{pH} & =14-\mathrm{pOH} \\
& \\
& =14-0.83393 \\
& =13.166
\end{array}
$$

3 sig digs in the concentration gives 3 decimals in the pH

i) 2.50 g of $\mathbf{C a O}$ (s) dissolved in 500.0 mL of solution

CaO reacts with water to produce $\mathrm{OH}^{1-}: \mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{1-}(\mathrm{aq})$

$$
2.50 \mathrm{~g} \mathrm{CaO} \times \frac{1 \mathrm{~mol}}{56.08 \mathrm{~g}}=0.044579 \mathrm{~mol}
$$

$\mathrm{c}=\underline{\mathrm{n}}$
V
$=\frac{0.044579 \mathrm{~mol}}{0.5000 \mathrm{~L}}$
$=0.089158 \mathrm{M}$

CaO is a strong base, from Group II

$$
\therefore\left[\mathrm{OH}^{1-}\right]=2 \mathrm{x}[\mathrm{CaO}]
$$

$$
=0.178317 \mathrm{M}
$$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{1-}\right]
$$

$$
=-\log [0.178317]
$$

$$
=0.74881
$$

$$
\mathrm{pH}=14-\mathrm{pOH}
$$

$$
=14-0.178317
$$

$$
=13.251 \quad(3 \text { decimal places })
$$

3 sig digs in the concentration gives 3 decimals in the pH
2. In all of these examples, the pH of the acids is very low and the pH of the bases is very high. Suggest a reason why.

All of these substances are strong acids and bases and their concentrations are fairly high (above 0.10 M). They completely ionize/dissociate in water to produce high concentrations of $\mathrm{H}_{3} \mathrm{O}+$ and OH - ions, so the acids have very low pH and the bases have very high pH .

If, however, the concentration of HCl (a strong acid) was only 0.0000100 M , the pH would be only 4.000 , showing that the pH of a solution depends on both the strength and concentration of the acid.

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}+\right] } & =[\mathrm{HCl}] \\
\mathrm{pH} \quad= & -\log \left[\mathrm{H}_{3} \mathrm{O}^{1+}\right] \\
= & -\log [0.0000100] \\
= & 4.000
\end{aligned}
$$

