Acids and Bases Review, so far....

Complete the following chart for these **acids**: 1. Acids are proton ___ Conjugate Acid **Ionization Reaction in Water** Ka Kb **Base** H_2SO_3 HCHO₂ HPO_4^{2-} H_2O NH_4^{1+} HCO₃¹- H_2SO_4 C₅H₅NH⁺ _____. Complete the following chart for these <u>bases</u>: 2. Bases are proton Conjugate **Ionization Reaction** Ka Kb **Base** Acid ClO- N_2H_4 (aq) CH₃COO HPO_4^{2-} \mathbf{F}^{1-} H_2O NH₂OH NH_3 C_5H_5N HCO₃¹⁻3. For nitrogen compounds, how can you recognize when they will behave as bases? As acids? 4. As a general rule for weak acids and bases, negative ions in solution will behave as ______. 5. Using your knowledge of trends for acid strengths, arrange the following acids in order from highest to lowest strength: HC1 H_3PO_4 H_3PO_3 HI 6. Using **Ka values**, arrange the following acids in order from highest to lowest strength: HF HCH₃COO HNO₂ H_3PO_4 H_2S H_2SO_3 H_2CO_3 7. Which of the acids in Q6 has the strongest conjugate base? 8. Calculate the pH of the following solutions: a) 15.4 g of potassium hydroxide in a total volume of 600.0 mL solution (13.660, 3 decimal places) b) 125 mL of 15.0 M of nitric acid diluted to 1.00 litre of solution (-0.273, 3 decimal places) c) a 0.0125 M solution of magnesium hydroxide (12.398, 3 decimal places) d) a 1.35 M solution of acetic acid (2.31, 2 decimal places from K_a) e) a 2.00 M solution of pyridine (C_5H_5N) (9.77, 2 decimal places from K_b) f) 0.555 M solution of hypobromite ion (from sodium hypobromite) (11.15, 2 decimals from K_a)

(-0.556, 3 decimal places)

g) 100.0 mL of 18.0 M H₂SO₄ diluted to 500.0 mL of solution

9. Complete the following chart. Include the correct number of sig digs in your answers:

pН	рОН	[H ₃ O+]	[OH-]	acid/base/neutral
1.25				
		4.63 x 10 ⁻¹⁰		
	9.10			
			0.750	
	5.00			

10.	The following	reaction	strongly	favours	the	reactants:

$$HCO_3^{1-}(aq) + HSO_4^{1-}(aq) \leftrightarrow CO_3^{2-}(aq) + H_2SO_4(aq)$$

- a) the strongest acid in this system is:
- b) the strongest base in this system is:
- c) Will this reaction have a large or small value of K_{eq} ? _____ Explain.
- 11. The pH of a 0.16 M solution of phenolic acid is 3.20.
- a) What is the Ka for phenolic acid?

$$(K_a = 2.5 \times 10^{-6})$$

b) What is the percent dissociation of the acid in this solution?

(only 0.39% dissociated)

- 12. Name the following substances and then predict whether their solutions will be acidic, basic or neutral:
- a) NaCH₃COO _____
- b) NH₄Cl_____
- c) Li₂O
- d) Sr(NO₃)₂_____
- e) HBrO (HOBr)
- f) CoBr₂ _____
- g) Cr(NO₃)₂____
- h) Na₃PO₄ _____
- i) HSCN _____
- j) CaC₂O₄ _____
- k) Mg(ClO₃)₂_____
- l) K₃BO₃ _____
- m) SnCl₄ _____
- 13. What are two tests or properties you could distinguish between the following solutions?
- a) NaCl and NaClO
- b) H₂O and Li₂O _____
- c) HClO₂ and HClO₃
- d) H₂S and Na₂S _____
- e) Ca(OH)₂ and Co(OH)₂
- 14. Write the products of the following reactions (if any) and then balance each reaction:
- a) Mg (s) + CH₃COOH (aq) \rightarrow
- b) NaOH (aq) + Ba (s) \rightarrow
- c) $HBrO_3$ (aq) + K_2CO_3 (s) \rightarrow
- d) $K_2O(s) + H_2O(l) \rightarrow$

Acids and Bases Review, so far.... Answers

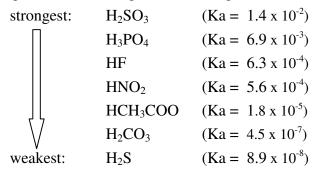
1. Acids are proton **donors**. Complete the following chart for these **acids**:

Acid	Ionization Reaction in Water	Conjugate Base	Ka	Kb
H ₂ SO ₃	$H_2SO_3(l) + H_2O(l) \leftrightarrow HSO_3^{1-}(aq) + H_3O^+(aq)$	HSO ₃ ¹⁻	1.4 x 10 ⁻²	7.1 x 10 ⁻¹³
HCHO ₂	$\text{HCHO}_2(l) + \text{H}_2\text{O}(l) \leftrightarrow \text{HCO}_2^{l-}(aq) + \text{H}_3\text{O}^+(aq)$	HCO ₂ ¹⁻	1.8 x 10 ⁻⁴	5.6 x 10 ⁻¹¹
HPO ₄ ²⁻	$HPO_4^{2-}(aq) + H_2O(l) \leftrightarrow PO_4^{3-}(aq) + H_3O^+(aq)$	PO ₄ ³⁻	4.8 x 10 ⁻¹³	2.1 x 10 ⁻²
H ₂ O	$H_2O(1) + H_2O(1) \leftrightarrow OH^{1-}(aq) + H_3O^+(aq)$	OH ¹⁻	1.0 x 10 ⁻¹⁴	1.0
NH ₄ ¹⁺	$NH_4^+(aq) + H_2O(l) \leftrightarrow NH_3(aq) + H_3O^+(aq)$	NH ₃	5.6 x 10 ⁻¹⁰	1.8 x 10 ⁻⁵
HCO ₃ ¹⁻	$HCO_3^{1-}(aq) + H_2O(1) \leftrightarrow CO_3^{2-}(aq) + H_3O^+(aq)$	CO ₃ ²⁻	4.7 x 10 ⁻¹¹	2.1 x 10 ⁻⁴
H ₂ SO ₄	$H_2SO_4(1) + H_2O(1) \rightarrow HSO_4^{1-}(aq) + H_3O^+(aq)$	HSO ₄ ¹⁻	1.0×10^3	1.0 x 10 ⁻¹⁷
C ₅ H ₅ NH ⁺	$C_5H_5NH^+(aq) + H_2O(l) \leftrightarrow C_5H_5N(aq) + H_3O^+(aq)$	C ₅ H ₅ N	5.9 x 10 ⁻⁶	1.7 x 10 ⁻⁹

2. Bases are proton <u>acceptors</u>. Complete the following chart for these <u>bases</u>:

Base	Ionization Reaction	Conjugate Acid	Ka	Kb
ClO-	$\text{ClO}^{1-}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \leftrightarrow \text{HClO}(\text{aq}) + \text{OH}^-(\text{aq})$	HC1O	4.0 x 10 ⁻⁸	2.5 x 10 ⁻⁷
N_2H_4 (aq)	$N_2H_4 (aq) + H_2O (l) \leftrightarrow N_2H_5^+ (aq) + OH^- (aq)$	$N_2H_5^+$	7.7 x 10 ⁻⁹	1.3 x 10 ⁻⁶
CH ₃ COO ¹⁻	CH_3COO^{1-} (aq) + H_2O (1) $\leftrightarrow CH_3COOH$ (aq) + OH^- (aq)	CH₃COOH	1.8 x 10 ⁻⁵	5.6 x 10 ⁻¹⁰
HPO ₄ ²⁻	$HPO_4^{2-}(aq) + H_2O(l) \leftrightarrow H_2PO_4^{1-}(aq) + OH^-(aq)$	H ₂ PO ₄ ¹⁻	6.2 x 10 ⁻⁸	1.6 x 10 ⁻⁷
F ¹⁻	$F^{1-}(aq) + H_2O(1) \leftrightarrow HF(aq) + OH^{-}(aq)$	HF	6.3 x 10 ⁻⁴	1.6 x 10 ⁻¹¹
H ₂ O	$H_2O(1) + H_2O(1) \leftrightarrow H_3O^+(aq) + OH^{1-}(aq)$	H ₃ O ⁺	1.0 x 10 ⁻¹⁴	1.0
NH ₂ OH	$NH_2OH(aq) + H_2O(l) \leftrightarrow NH_3OH^+(aq) + OH^-(aq)$	NH ₃ OH ⁺	1.1 x 10 ⁻⁶	8.8 x 10 ⁻⁹
NH ₃	$NH_3 (aq) + H_2O (l) \leftrightarrow NH_4^+ (aq) + OH^- (aq)$	NH ₄ ⁺	5.6 x 10 ⁻¹⁰	1.8 x 10 ⁻⁵
C ₅ H ₅ N	C_5H_5N (aq) + H_2O (l) \leftrightarrow $C_5H_5NH^+$ (aq) + OH^- (aq)	C ₅ H ₅ NH ⁺	5.9 x 10 ⁻⁶	1.7 x 10 ⁻⁹
HCO ₃ ¹⁻	$HCO_3^{1-}(aq) + H_2O(1) \leftrightarrow H_2CO_3(aq) + OH^-(aq)$	H ₂ CO ₃	4.5 x 10 ⁻⁷	2.2 x 10 ⁻⁸

- 3. For nitrogen compounds, how can you recognize when they will behave as bases? As acids?
 - if a nitrogen compound is uncharged (neutral), it will probably behave as a base
 - if a nitrogen compound is positively charged, it will probably behave as an acid
- 4. As a general rule for weak acids and bases, negative ions in solution will behave as <u>bases</u>.


5. Using your knowledge of trends for acid strengths, arrange the following acids in order from highest to lowest strength:

HI is the strongest (it is closest to the bottom of the Periodic table),

HCl is the only other strong acid so it comes next

H₃PO₄ is a weak acid, but it is stronger than H₃PO₃ because it has more O atoms H₃PO₃ is the weakest of these acids

6. Using Ka values, arrange the following acids in order from highest to lowest strength:

- 7. Which of the acids in Q6 has the strongest conjugate base? H₂S has the strongest conjugate base, HS
- 8. Calculate the pH of the following solutions:
- a) 15.4 g of potassium hydroxide in 600.0 mL of distilled water
 b) 125 mL of 15.0 M of nitric acid diluted to 1.00 litre of solution
 c) a 0.0125 M solution of magnesium hydroxide
 d) a 1.35 M solution of acetic acid
 e) a 2.00 M solution of pyridine (C_5H_5N) (13.660, 3 decimal places) (-0.273, 3 decimal places) (12.398, 3 decimal places) $(2.31, 2 \text{ decimal places from } K_a)$ $(9.77, 2 \text{ decimal places from } K_b)$
- f) 0.555 M solution of hypobromite ion (from sodium hypobromite) (11.15, 2 decimals from K_a) g) 100.0 mL of 18.0 M H₂SO₄ diluted to 500.0 mL of solution (-0.556, 3 decimal places)

9. Complete the following chart. Include the correct number of sig digs in your answers:

pН	рОН	[H ₃ O+]	[OH-]	acid/base/neutral
1.25	12.75	5.6 x 10 ⁻²	1.8 x 10 ⁻¹³	acid
9.334	4.666	4.63 x 10 ⁻¹⁰	2.16 x 10 ⁻⁵	base
4.90	9.10	1.3 x 10 ⁻⁵	7.9 x 10 ⁻¹⁰	acid
13.875	0.125	1.33 x 10 ⁻¹⁴	0.750	base
9.00	5.00	1.0 x 10 ⁻⁹	1.0 x 10 ⁻⁵	base

10. The following reaction strongly favours the reactants:

$$HCO_3^{1-}(aq) + HSO_4^{1-}(aq) \leftrightarrow CO_3^{2-}(aq) + H_2SO_4(aq)$$

- a) the strongest acid in this system is: H_2SO_4 (aq)
- b) the strongest base in this system is: CO_3^{2-} (aq)
- c) Will this reaction have a large or small value of $K_{\text{eq}}?\ Explain.$
 - the K_{eq} for this reaction will be very small in the forward direction. Because the products of the reaction include a very strong acid and strong base (the conjugate of a weak acid), these species will tend to drive the reaction strongly in reverse. There will be very little product formed, so the value of K_{eq} will be much less than one.

11. The pH of a 0.16 M solution of phenolic acid is 3.20.

a) What is the Ka for phenolic acid?

 $(K_a = 2.5 \times 10^{-6})$

b) What is the percent dissociation of the acid in this solution?

(only 0.39% dissociated)

12. Name the following substances and then predict whether their solutions will be acidic, basic or neutral:

a) NaCH₃COO: sodium acetate, basic

b) NH₄Cl: ammonium chloride, acidic

c) Li₂O: lithium oxide, basic

d) $Sr(NO_3)_2$: strontium nitrate, neutral

e) HBrO (HOBr): hypobromous acid, acidic

f) CoBr₂: cobalt (II) bromide, acidic

g) Cr(NO₃)₂: chromium (II) nitrate, acidic

h) Na₃PO₄: sodium phosphate, basic

i) HSCN: thiocyanic acid, acidic

j) CaC₂O₄: calcium oxalate, basic

k) Mg(ClO₃)₂: magnesium chlorate, neutral

I) K₃BO₃: potassium borate, basicm) SnCl₄: tin (IV) chloride, acidic

13. What are two tests or properties you could distinguish between the following solutions?

a) NaCl and NaClO: sodium chloride is a neutral salt while sodium hypochlorite is a basic salt

Test	NaCl solution	NaClO solution
skin feel	watery	slippery
colour with phenolphthalein	colourless	pink
colour with bromothymol blue	green	blue
colour with red litmus	red	blue

b) H₂O and Li₂O: water is neutral and covalent while lithium oxide will form a base in solution

Test	H ₂ O solution (liquid)	Li ₂ O solution
skin feel	watery	slippery
colour with phenolphthalein	colourless	pink
colour with bromothymol blue	green	blue
colour with red litmus	red	blue
conductivity	non-electrolyte	electrolyte

c) HClO₂ and HClO₃: both of these solutions are acids, but HClO₂ is a weak acid while HClO₃ is strong

Test	HClO ₂ solution	HClO ₃ solution
conductivity	weak electrolyte	strong electrolyte
pH (use same concentration of both solutions, eg. 1.0M of each)	pH of HClO ₂ will be higher than pH of HClO ₃	pH of HClO ₃ will be lower than pH of HClO ₂
rate of reaction with a metal	weak acid so reaction will be slow because the [H ₃ O+] is low	strong acid so reaction will be fast because the [H ₃ O+] is high
rate of reaction with a carbonate	weak acid so reaction will be slow because the [H ₃ O+] is low	strong acid so reaction will be fast because the [H ₃ O+] is high

13d) H₂S and Na₂S: in solution, H₂S is a weak acid and Na₂S is a basic salt

Test	H ₂ S solution	Na ₂ S solution
skin feel	watery	slippery
рН	less than 7.0	greater than 7.0
colour with phenolphthalein	colourless	pink
colour with bromothymol blue	yellow	blue
colour with red litmus	red	blue
colour with blue litmus	red	blue
reaction with metals	produce H ₂ gas	no reaction
reaction with carbonates	produce CO ₂ gas	no reaction

e) Ca(OH)₂ and Co(OH)₂: both solutions are bases, but Ca(OH)₂ is a strong base and Co(OH)₂ is weak

Test	Ca(OH) ₂ solution	Co(OH) ₂ solution
conductivity	strong electrolyte	weak electrolyte
pH (use same concentration of both solutions, eg. 1.0M of each)	pH of Ca(OH) ₂ will be higher than pH of Co(OH) ₂	pH of Co(OH) ₂ will be lower than pH of Ca(OH) ₂

- 14. Write the products of the following reactions (if any) and then balance each reaction:
- a) $Mg(s) + 2 CH_3COOH(aq) \rightarrow H_2(g) + Mg(CH_3COO)_2(aq)$
- b) NaOH (aq) + Ba (s) \rightarrow no reaction
- c) 2 $HBrO_3$ (aq) + K_2CO_3 (s) \rightarrow 2 $KBrO_3$ (aq) + H_2O (l) + CO_2 (g)
- d) $K_2O(s) + H_2O(l) \rightarrow 2 KOH(aq)$