Review 6: Solubility Equilibria

Objectives:

- 1. Be able to write dissociation equations for ionic compounds dissolving in water.
- 2. Given Ksp, be able to determine the solubility of a substance in both mol/L and g/L.
- 3. Given solubility (in mol/L or g/L), determine the Ksp of a substance.
- 4. Calculate the solubility of a substance in a solution that contains a common ion.
- es

5.	Memorize and be able to apply the basic solubility rules to predict the formation of precipitates when solutions are mixed.		
	Write double displacement reactions, full and not Use Qsp (Trial Ksp) to predict if a precipitate w		
Pra	actice Multiple Choice Questions:		
1. a) b)	The ion concentrations in a 0.025 M solution of 0.025 M $Al^{3+}_{(aq)}$ and 0.025 M $SO_4^{2-}_{(aq)}$ 0.050 M $Al^{3+}_{(aq)}$ and 0.050 M $SO_4^{2-}_{(aq)}$	c)	$(SO_4)_3$ are: 0.050 M Al $^{3+}$ (aq) and 0.075 M SO $^{2-}$ (aq) 0.010 M Al $^{3+}$ (aq) and 0.015 M SO $^{2-}$ (aq)
a)b)c)	Which of the following does not define solubility the concentration of solute in a saturated solution the maximum mass of solute that can dissolve in the minimum moles of solute needed to produce the concentration of the ions in a solution	n 1 a g	
a)	The solubility of SnS is 3.2×10^{-3} M. The value 3.2×10^{-3} 1.0×10^{-5}	c)	5.7 x 10 ⁻² 6.4 x 10 ⁻³
a)	Which of the following ions would most effective CH_3COO^{1-} ions CO_3^{2-} ions	c)	remove Ca ²⁺ ions from hard water? SO ₄ ²⁻ ions ClO ₃ ¹⁻ ions
a)b)c)	In a solubility equilibrium, the rate of dissolving equals the rate of crystallization mass of dissolved solute is greater than the mass concentration of solute equals the concentration neither dissolving nor crystallization are occurring	s of of s	
	Which of the following will not produce a preci NaCH ₃ COO and Pb(NO ₃) ₂ Ca(NO ₃) ₂ and K ₃ PO ₄	c)	te when the following solutions are mixed? KOH and CaCl ₂ Ba(OH) ₂ and (NH ₄) ₂ SO ₄
7. a) b)	The solubility of CdS is 8.0×10^{-14} . The value o 8.0×10^{-14} 2.8×10^{-7}	c)	p is 6.4 x 10 ⁻²⁷ 1.6 x 10 ⁻¹³
Q	At 25°C, which of the following saturated soluti	one	will have the greatest [OH ¹ -12]

8. At 25°C, which of the following saturated solutions will have the greatest [OH¹⁻]? a) $Fe(OH)_2$

b) Ni(OH)₂

c) $Cd(OH)_2$ d) $Pb(OH)_2$

9.	When 0.010 moles of CaCl _{2 (s)} are added to 1.0	L of 0.0010 M KIO ₃ , the:	
a)	$Q_{sp} \le K_{sp}$ and no precipitate forms	c) $Q_{sp} > K_{sp}$ and a precipitate forms	
b)	$Q_{sp} > K_{sp}$ and no precipitate forms	d) $Q_{sp} \le K_{sp}$ and a precipitate forms	
	Calculate the [Li ⁺] in 200.0 mL of 1.5 M Li ₂ SC		
	0.30 M 1.5 M	c) 3.0 M d) 0.60 M	
U)	1.3 141	u) 0.00 lvi	
	The FULL ionic equation for the reaction between		
		\leftrightarrow Cd ²⁺ (aq) + 2 NO ₃ ¹⁻ (aq) + 2 K ¹⁺ (aq) + S ²⁻ (aq)	
	$Cd^{2+}(aq) + NO_3^{1-}(aq) + K^{1+}(aq) + S^{2-}(aq) \leftrightarrow Cd^{2+}(aq) + 2NO_3^{1-}(aq) + 2K^{1+}(aq) + S^{2-}(aq)$	$Cd^{2+}(aq) + NO_3^{1-}(aq)NO_3^{1-}(aq) + K^{1+}(aq) + S^{2-}(aq)$	
	$Cd^{2+}(aq) + NO_3^{1-}(aq) + K^{1+}(aq) + S^{2-}(aq) \leftrightarrow$		
u)	Cu (aq) 1 1103 (aq) 1 12 (aq) 1 5 (aq) 17	(aq) - 1103 (aq)	
	Silver chloride, AgCl, would be least soluble in) 10117 C	
a) b)	1.0 M AgNO ₃ 1.0 M NaNO ₃	c) 1.0 M ZnCl ₂ d) 1.0 M HCl	
U)	1.0 W NanO3	u) 1.0 WHE	
	3. Which of the following saturated solutions will have the lowest [Pb ²⁺]?		
	Pb(OH) ₂	c) PbI ₂	
U)	$PbBr_2$	d) Pb(NO ₃) ₂	
14.	Consider the following equilibrium: Fe(OH) ₂ Which of the following will NOT cause the equ		
a)	adding NaOH	c) adding an acid	
b)	adding $Fe(OH)_2(s)$	d) adding Fe(NO ₃) ₂	
15.	The net ionic equation that describes a saturated	l solution of Ag ₂ CrO ₄ is:	
	$Ag_2CrO_{4(s)} \rightleftharpoons Ag_2CrO_{4(aq)}$		
b)	$Ag_2CrO_{4(s)} \rightleftharpoons 2Ag^+_{(aq)} + CrO_{4(aq)}^{2-}$		
c)	$2Ag^{+}_{(aq)} + CrO_{4(aq)}^{2-} + 2H_{2}O_{(\ell)} \rightleftharpoons 2AgOH_{(s)}$	$+ H_2CrO_{4(aq)}$	
d)	$Ag_2CrO_{4(s)} \rightleftharpoons 2Ag^+_{(ag)} + Cr^{6+}_{(ag)} + 4O^{2-}_{(ag)}$		
1.0			
10.	6. Consider the following saturated solutions: Na ₂ SO ₄ , BaSO ₄ , CaSO ₄ The order of cation concentration, from highest to lowest, is		
a)	[Na ¹⁺]>[Ca ²⁺]>[Ba ²⁺]	c) [Ca ²⁺]>[Na ¹⁺]>[Ba ²⁺]	
b)	$[Ba^{2+}] > [Ca^{2+}] > [Na^{1+}]$	d) $[Na^{1+}] > [Ba^{2+}] > [Ca^{2+}]$	
17.	The ion concentrations in 2.00L of 0.32M K ₃ PO), ara:	
	$[K^+] = 0.96 \text{ M}; [PO_4^{3-}] = 0.32 \text{ M}$	c) $[K^+] = 0.48 \text{ M}; [PO_4^{3-}] = 0.16 \text{ M}$	
	$[K^+] = 0.16 \text{ M}; [PO_4]^3 = 0.16 \text{ M}$	d) $[K^+] = 0.32 \text{ M}$; $[PO_4^{3-}] = 0.32 \text{ M}$	
		, L , J	
	What is observed when H_2SO_4 is added to a saturation of G_1 and G_2 and G_3		
a)		c) bubbles of H ₂ are given off	
b)	additional CaSO ₄ precipitates	d) the pH increases	

19. a) b)	In a solubility equilibrium, which of the following the concentration of solute and solvent are always neither dissolving nor crystallization are occurring	/s e	
c)	the rate of dissolving equals the rate of crystalliz		
d)	the mass of dissolved solute is greater than the n	nas	s of the solution
20.a)b)c)d)	Consider the experiment shown to the right: Equal moles of AgNO ₃ are added to each solution. It is observed that a precipitate forms in all but one solution. Which solution does not form a precipitate? Cl ¹⁻ S ²⁻ BrO ₃ ¹⁻ ClO ₃ ¹⁻		H H H AgNO,
u)	ClO3		
21.	The solubility of Mn(IO ₃) ₂ is 4.8×10^{-3} M. What is the value of K _{sp} ?	0	.010M 0.010M 0.010M
a) b)	4.4 x 10 ⁻⁷ 7.1 x 10 ⁻⁶		
c)	1.1 x 10 ⁻⁷		
d)	4.6×10^{-5}		
22.	A saturated solution of NaCl contains 36.4 g of NaCl is:	salt	t in 100.0 mL of solution. The solubility of
a)	3.64 M		6.23 M
b)	1.60 M	d)	0.364 M
23.	A solution contains equal concentrations of Ba(l solution of NaF is added drop by drop, which co		
	BaF ₂		CdF_2
b)	CaF_2	d)	FeF ₂
24.	Which of the following compounds is the least s	solı	able in water?
	KMnO ₄		Fe(OH) ₃
b)	CuCl	d)	$(NH4)_2S$
25.	According to the general solubility rules, which solutions are combined?	of	the following will form a precipitate when the
	LiI and Na ₂ CO ₃	-	Ba(ClO ₃) ₂ and CuCH ₃ COO
b)	Mg(NO ₃) ₂ and KCl	d)	SrS and NH ₄ OH
26.	The Ksp of SrF_2 is 4.3 x 10^{-9} . Calculate the sol	ubi	lity of SrF ₂ .
	$6.6 \times 10^{-5} M$,	$1.6 \times 10^{-3} M$
b)	$4.3 \times 10^{-9} M$	d)	$1.0 \times 10^{-3} M$

27. How many moles of FeS are dissolved in 200.0mL of a saturated solution of FeS? The K_{sp} of FeS at 25°C is 6.0 x 10⁻¹⁹.
a) 1.5 x 10⁻¹⁰
c) 3.9 x 10⁻⁹

b) 1.2 x 10⁻¹⁹

c) 3.9 x 10⁻⁹
 d) 7.7 x 10⁻¹⁰

	A solution contains equal concentrations of Na ₂ of Ba(NO ₃) ₂ is added drop by drop, which comp BaCO ₃ Ba(ClO ₃) ₂	ooui c)			If a solution
29. a) b)	When 10.0 mL of 0.100 M BaCl ₂ is added to 50 $Q_{sp} < K_{sp}$ and no precipitate forms $Q_{sp} > K_{sp}$ and no precipitate forms	c)	mL of 0.025 M Na ₂ S $Q_{sp} > K_{sp}$ and a pre $Q_{sp} < K_{sp}$ and a pre	cipitate forms	
30.	Which of the following units could be used to it I) mL/°C II) mg/L III) mol/mL IV) L/s	ndio	cate solubility?		
	I and II only II and III only		I, II and III only II, III and IV only		
31. a) b)	Which of the following substances will have th K ₂ BO ₃ Ni(CH ₃ COO) ₂	c)	nallest Ksp? (NH ₄) ₂ CO ₃ Cu ₂ S		
32. a) b)	The solubility product expression for tin(II) hyd $[Sn^{2+}][OH^{-}]$ $[Sn^{2+}][OH^{-}]^{2}$	c)	ide, Sn(OH) ₂ , is [Sn ²⁺] ² [OH ⁻] [Sn ¹⁺][OH ²⁻]		
a)	The solubility product expression for silver sulfit $[Ag^+]^2[S^{2-}]$ $[Ag^+][S^{2-}]^2$	c)	s: [Ag ⁺] [S ²⁻] [Ag ⁺] ² [S ²⁻] ²		
a) b)	According to the Ksp values given, the chromate compound that is the most soluble in water is: CdCrO ₄ BaCrO ₄ PbCrO ₄ SrCrO ₄	e	CdCrO ₄ BaCrO ₄ PbCrO ₄ SrCrO ₄	Ksp = 9.0 x Ksp = 1.12 x Ksp = 2.3 x Ksp = 2.1 x	x 10 ⁻¹⁰ 10 ⁻¹³
35.	The molar solubility of PbBr ₂ is $2.17 \times 10^{-3} \text{ M}$ a this temperature.	t a c	ertain temperature.	Calculate K _{sp}	for PbBr ₂ at
	6.2 x 10 ⁻⁶ 4.1 x 10 ⁻⁸	-	9.4 x 10 ⁻⁶ 1.0 x 10 ⁻⁸		
36.	The solubility of silver sulfate in water at 100°C solubility product (Ksp) of this salt at 100°C?	is a	approximately 1.4 g _]	per 100 mL. V	What is the
a)	5.7 x 10 ⁻⁸	c)	8.3 x 10 ⁻⁶		
b)	4.1 x 10 ⁻⁵	d)	3.6 x 10 ⁻⁴		
37.	For Cu(OH) ₂ , $K_{sp} = 1.6 \times 10^{-19}$. What is the mola	ar so	olubility of Cu(OH)2	?	
	$3.4 \times 10^{-7} M$		6.4 x 10 ⁻⁷ M		
b)	$5.4 \times 10^{-7} \mathrm{M}$	d)	$4.3 \times 10^{-7} M$		

38.	Ag ₃ PO ₄ would be least soluble at 25°C in		
	0.1 M NaNO ₃	b) 0.1 M NaClO ₃	
c)	0.1 M NaCH ₃ COO	d) 0.1 M Na ₃ PO ₄	
	9. The Ksp of PbCl ₂ is 1.2 x 10 ⁻⁵ . The molar solubility of PbCl ₂ in 0.20 M Pb(NO ₃) ₂ solution is:		
	$1.4 \times 10^{-2} \text{ M}$	c) $9.2 \times 10^{-3} \text{ M}$	
b)	$3.1 \times 10^{-2} M$	d) $3.9 \times 10^{-3} M$	
40.	Which of the following pairs of compounds gives a precipitate when aqueous solutions of them are mixed?		
	CaBr ₂ and K ₂ CO ₃	c) HNO ₃ and NH ₄ I	
b)	BaCl ₂ and KClO ₄	d) Na ₂ CO ₃ and H ₂ SO ₄	
	1. Which solid will precipitate first if an aqueous solution of Na ₂ CrO ₄ at 25°C is slowly added to an aqueous solution containing 0.0010 M Pb(ClO ₃) ₂ and 0.0010 M Ba(NO ₃) ₂ at 25°C?		
	BaCrO ₄ (s)	c) NaNO ₃ (s)	
b)	$PbCrO_4(s)$	d) NaClO ₃ (s)	
G1	1 II A D (O (
Sn	ort and Long Answer Practice Questions:		
1.	Write the dissociation equations that occur	when the following salts are dissolved in water.	
a)	$Na_2S(s)$		
	CaCl ₂ (s)		
	Ba(NO ₃) ₂ (s)		
d)	(NH4)3PO4 (s)		
2.	Using the solubility rules that you have MI soluble or insoluble (slightly soluble):	EMORIZED, classify the following substances as either	
a)	Pb(OH) ₂ d)	BaCO ₃	
b)	$Sr(CH_3COO)_2$ e)	CaSO ₄	
c)	AgNO ₃ f)	$(NH_4)_2S$	
3.	A solution contains a mixture of 0.10 M CO_3^{2-} ions, 0.10 M SO_4^{2-} ions and 0.10 M IO_3^{1-} ions. Ba(NO ₃) ₂ solution is added slowly to the mixture. Identify the order in which the barium salts will precipitate.		
4.	Write balanced chemical equations for the double displacement reactions that occur when the following solutions are mixed. Identify any possible precipitates by including the states of all		
	species. Write net ionic equations for any p	precipitation reactions.	
a)	a) sodium hydroxide + silver acetate		
b)	ammonium sulfate + potassium phosphate		
c)	lithium carbonate + lead (II) nitrate		
d)	potassium sulfide + silver chlorate		

5. An ionic solid A₂B₃ dissolves in water according to the following equation:

$$A_2B_3(s) \leftrightarrow 2 A^{3+}(aq) + 3 B^{2-}(aq)$$

If the solubility of the solid is $0.20 \text{ mol} \cdot \text{L}^{-1}$, calculate the solubility product, K_{sp} , for A_2B_3 .

- 6. Calculate the molar solubility of lead (II) iodate, $Pb(IO_3)_2$, in water. Then, express the solubility as the number of milligrams per litre. K_{sp} for lead (II) iodate is 2.6×10^{-13} .
- 7. Determine whether a precipitate will form when 1.00 mL of 0.025 M sodium sulfate is mixed with 50.0 mL of 0.050 M calcium nitrate solution.
- 8. In a lab, a student takes 20.0 mL of 0.10 mol/L Ba(NO₃)₂ solution and adds it to 50.0 mL of 0.20 mol/L of Na₂CO₃ solution. Will a precipitate form?
- 9. What is the solubility of BaSO₄ in a 1.20 M solution of H₂SO₄?
- 10. What is the solubility of CaCO₃ in a 0.500 M solution of Ca(NO₃)₂?
- 11.a) What is the solubility of BaF₂ in water? Express your answer as grams per litre.
 - b) When BaF₂ dissolves in water, it produces heat. Will BaF₂ be more soluble in hot or cold water? Explain.