Answers to Unit 7, Lesson 01: Review of Acids and Bases

Property	Acids	Bases	
Arrhenius Definition	A substance that dissolves in water to produce H+ ions	A substance that dissolves in water to produce OH- ions	
How to recognize from a chemical formula	the first element is always hydrogen (H)	the first element is usually a metal and the negative ion is OH-	
Examples	HCl, HNO ₃ , H ₂ SO ₄ NaOH, Mg(OH) ₂ , Zn(OH) ₂		
Which ion gives them their properties?	H^+ (also written H_3O^+ , known as the hydronium ion)	OH ⁻ (the hydroxide ion)	
Are they electrolytes?	yes, they conduct electricity in solution yes, they conduct electricity in solution		
Taste	sour bitter		
Skin feel	watery	slippery (soapy)	
Colour with phenolphthalein	colourless pink		
Colour with red or blue litmus paper	red	blue	
Colour with Bromothymol blue	yellow	blue	
Reaction with metals	produce $H_2(g)$ and a salt	no reaction	
Reaction with carbonates	produce CO_2 (g), H_2O (l) and a salt no reaction		
рН	less than 7.0 greater than 7.0		
	3 4 5 6 7 8 	9 10 11 12 13 14	

increasing acid strength

neutral

increasing base strength

Writing the reactions of acids with metals to produce hydrogen gas and a salt:

$$2 \text{ Li}(s) + \text{H}_2\text{SO}_4(aq) \rightarrow \text{H}_2(g) + \text{Li}_2\text{SO}_4(aq)$$

 $Zn(s) + 2 HNO_3(aq) \rightarrow H_2(g) + Zn(NO_3)_2(aq)$

Writing the reactions of acids with carbonates to produce carbon dioxide, water and a salt:

2 HBr (aq) + Na₂CO₃ (s)
$$\rightarrow$$
 2 NaBr (aq) + H₂O (l) + CO₂ (g)

2 HC
$$\ell$$
O₃ (aq) + CaCO₃ (s) \rightarrow Ca(C ℓ O₃)₂ (aq) + H₂O (l) + CO₂ (g)

Naming Acids

Acids are written with hydrogen as their first element.

The name of the acid depends on the name of its negative ion.

The following are the naming rules:

- if the name of the ion ends in "ide", name the acid <u>hydro</u> ic acid
- if the name of the ion ends in "ate", change the "ate" suffix to <u>ic acid</u>
- if the name of the ion ends in "ite", change the "ite" suffix to <u>ous acid</u>

Formula of Acid	Name of the Ion	Name of the Acid
HCl	chlor ide	hydrochloric acid
HClO ₃	chlor ate	chloric acid
H_2SO_3	sulf ite	sulfurous acid
HIO ₄	period ate	periodic acid
HI	iod ide	hydroiodic acid
HNO ₂	nitr ite	nitrous acid
HCN	cyan ide	hydrocyanic acid
H ₂ S	sulf ide	hydrosulfuric acid
H ₂ CrO ₄	chromate	chromic acid

Strength of Acids and Bases

Acids and bases are described in terms of their concentration and their strength.

- 1. Concentration indicates how much acid or base is dissolved in a certain amount of solution
- eg. 5.0% V/V acetic acid: 5.0 mL of acetic acid in 100.0 mL of solution
- eg. 3.0 M HCH₃COO (aq): 3.0 moles of acetic acid in 1.0 L of solution
- eg. 0.010 M HCl: 0.010 moles of HCl in 1.0 L of solution
- eg. 6.0 M NaOH: 6.0 moles of NaOH in 1.0 L of solution
- 2. Strength indicates how much the acid or base ionizes/dissociates to form ions in solution

Strong Acids:

- completely ionize and dissociates into ions in solution; essentially all of the acid is converted to ions
- are <u>very good</u> electrolytes in solution
- pH is <u>very low</u> (close to <u>0</u> or <u>1</u>)

There are only 6 **common** strong acids (you must memorize them):

sulfuric acid	(H_2SO_4)	hydrochloric acid	(HCl)
nitric acid	(HNO ₃)	hydrobromic acid	(HBr)
chloric acid	(HCℓO ₃)	hydroiodic acid	(HI)

Ionization and dissociation reactions (go to completion so use $a \rightarrow arrow$)

HCl (g) $\xrightarrow{H_2O}$ H¹⁺ (aq) + Cℓ¹⁻ (aq) HNO₃ (l) $\xrightarrow{H_2O}$ H¹⁺ (aq) + NO₃¹⁻ (aq)

essentially all of the acid is converted to ions in solution

Trends in acid strength:

- acid strength increases down a group on the periodic table eg. HF (weak) < HC $\ell <$ HBr < HI
- acid strength increases across a period (\rightarrow) eg. $H_3P < H_2S < HC\ell$
- acid strength increases as the # of oxygen atoms increases eg. $HC\ell O < HC\ell O_2 < HC\ell O_3 < HC\ell O_4$

Weak Acids:

- less than 1% of the acid molecules ionizes and dissociates (separates) into ions in solution
- almost all of the acid is found in solution as **intact molecules** with the H⁺ ion still attached
- are <u>very poor</u> electrolytes in solution
- pH is between <u>4.5</u> and about <u>6.9</u> (this is not a guaranteed range, it depends on the acid concentration)
- if an acid is NOT one of the six strong acids, then it is a weak acid

eg. HNO₂
$$\xrightarrow{\text{H}_2\text{O}}$$
 H¹⁺ (aq) + NO₂¹⁻ (aq)
eg. HCH₃COO $\xleftarrow{\text{H}_2\text{O}}$ H¹⁺ (aq) + CH₃COO¹⁻ (aq)

less than one in 100 acid molecules is converted to ions in solution; almost all of the acid is found as intact molecules

Strong Bases:

- completely dissociate into ions in solution; essentially all of the base is converted to ions
- are <u>very good</u> electrolytes in solution
- pH is <u>very high</u> (close to <u>13</u> or <u>14</u>)

The strong bases are: (memorize them)

- the oxides and hydroxides of the Group I metals: LiOH & Li₂O, NaOH & Na₂O, KOH & K₂O etc
- the oxides and hydroxides of the Group II metals (except <u>Be</u>): Mg(OH)₂ & MgO, Ca(OH)₂ & CaO, Sr(OH)₂ & SrO etc

eg. NaOH (s) $\xrightarrow{H_2O}$ Na¹⁺ (aq) + OH ¹⁻ (aq)

essentially all of the base is converted to ions in solution

eg. CaO (s) + H – OH (l)
$$\xrightarrow{H_2O}$$
 Ca²⁺ (aq) + 2 OH ^{1–} (aq)
(H₂O)

Weak Bases:

- less than 1% of the molecules <u>dissociate</u> into ions in solution (often because of poor solubility)
- almost all of the base is found in solution as **intact 'molecules'** with the OH⁻ still attached
- many weak bases are **insoluble** in water
- are <u>very poor</u> electrolytes in solution
- pH is between <u>7.1</u> and about <u>9.5</u> (again, this is not guaranteed, it depends on the base's concentration)
- if a base is NOT one of the strong bases, then it is a <u>weak base</u>

eg. Sc(OH)₃ (s) $\xrightarrow{H_2O}$ Sc³⁺ (aq) + 3 OH ¹⁻ (aq)

very little base is converted to ions in solution. Recall, these substances are only slightly soluble in water, so very little of the solid dissolves and dissociates

eg. Pb(OH)₄ (s)
$$\xrightarrow{H_2O}$$
 Pb⁴⁺ (aq) + 4 OH ¹⁻ (aq)

Answers to Unit 7, Lesson 01: Naming Common Acids and Bases

Formula	Name	Strong or Weak Acid
H ₂ CO ₃	carbonic acid	weak
H ₃ PO ₄	phosphoric acid	weak
H_2S	hydrosulfuric acid	weak
H_2SO_4	sulfuric acid	strong
HNO ₃	nitric acid	strong
HBr	hydrobromic acid	strong
HF	hydrofluoric acid	weak
HI	hydroiodic acid	strong
$H_2C_2O_4$	oxalic acid	weak
H_2SO_3	sulfurous acid	weak
HNO ₂	nitrous acid	weak
HIO	hypoiodous acid	weak
HClO ₃	chloric acid	strong
HBrO ₃	bromic acid	weak
HClO ₄	perchloric acid	strong
HCH ₃ COO	acetic acid	weak
HClO	hypochlorous acid	weak

1. Name the following acids and classify them as either strong or weak acids.

2. Name the following bases and classify them as either strong or weak bases. Use Roman numerals where needed.

NaOH	sodium hydroxide	strong
ZnO	zinc oxide	weak
Ca(OH) ₂	calcium hydroxide	strong
Fe(OH) ₃	iron (III) hydroxide	weak
Mg(OH) ₂	magnesium hydroxide	strong
Al(OH) ₃	aluminum hydroxide	weak
BaO	barium oxide	strong
КОН	potassium hydroxide	strong
AgOH	silver hydroxide	weak
CdO	cadmium oxide	weak
Li ₂ O	lithium oxide	strong
Sn(OH) ₄	tin (IV) hydroxide	weak
LiOH	lithium hydroxide	strong
NH ₄ OH	ammonium hydroxide	weak
K ₂ O	potassium oxide	strong
Ni ₂ O ₃	nickel (III) oxide	weak
Ba(OH) ₂	barium hydroxide	strong

Answers to Unit 7, Lesson 01: Reactions of Acids and Bases

1. Write **balanced** chemical equations to show the dissociation of the following substances in water. For the strong acids and bases, they dissociate completely so use a " \rightarrow " arrow. For the weak acids and bases, they do NOT dissociate completely so use a " \leftrightarrow " arrow.

- - - 1

$$\begin{split} &HC_{2}H_{3}O_{2}\left(l\right) + H_{2}O\left(l\right) \iff H^{+}\left(aq\right) + C_{2}H_{3}O_{2}^{1-}\left(aq\right) \\ &Cd(OH)_{2}\left(s\right) + H_{2}O\left(l\right) \iff Cd^{2+}\left(aq\right) + 2 OH^{1-}\left(aq\right) \\ &HClO_{4}\left(l\right) + H_{2}O\left(l\right) \longrightarrow H^{+}\left(aq\right) + ClO_{4}^{1-}\left(aq\right) \\ &MgO\left(s\right) + H_{2}O\left(l\right) \longrightarrow Mg^{2+}\left(aq\right) + 2 OH^{1-}\left(aq\right) \\ &H_{2}CrO_{4}\left(aq\right) + H_{2}O\left(l\right) \iff 2 H^{+}\left(aq\right) + CrO_{4}^{2-}\left(aq\right) \\ &Al(OH)_{3}\left(s\right) + H_{2}O\left(l\right) \iff Al^{3+}\left(aq\right) + 3 OH^{1-}\left(aq\right) \\ &Li_{2}O\left(s\right) + H_{2}O\left(l\right) \longrightarrow 2 Li^{1+}\left(aq\right) + 2 OH^{1-}\left(aq\right) \end{split}$$

2. Write **balanced** chemical equations for the reactions between the following substances. Be sure that you can name all of the compounds from these equations. Assume that these reactions go to completion and that the salts dissolve in water.

2 HCl (aq) + 2 Li (s)
$$\rightarrow$$
 H₂ (g) + 2 LiCl (aq)

2 HNO₃ (aq) + Mg (s)
$$\rightarrow$$
 H₂ (g) + Mg(NO₃)₂ (aq)

2 HClO₄ (aq) + K₂CO₃ (aq) \rightarrow H₂O (l) + CO₂ (g) + 2 KClO₄ (aq)

$$H_2SO_4(aq) + CaCO_3(s) \rightarrow H_2O(l) + CO_2(g) + CaSO_4(aq)$$

2 HBr (aq) + Co (s)
$$\rightarrow$$
 H₂ (g) + CoBr₂ (aq)

$$H_2SO_3(aq) + MgCO_3(s) \rightarrow H_2O(l) + CO_2(g) + MgSO_3(aq)$$

nitrous acid + zinc metal:

2 HNO₂ (aq) + Zn (s)
$$\rightarrow$$
 H₂ (g) + Zn(NO₂)₂ (aq)

hypobromous acid and aluminum metal:

6 HBrO (aq) + 2 Al (s)
$$\rightarrow$$
 3 H₂ (g) + 2 Al(BrO)₃ (aq)

phosphoric acid and sodium carbonate:

 $2 H_3PO_4(aq) + 3 Na_2CO_3(s) \rightarrow 3 H_2O(l) + 3 CO_2(g) + 2 Na_3PO_4(aq)$

hydrosulfuric acid and sodium metal

 $H_2S(aq) + 2 Na(s) \rightarrow H_2(g) + Na_2S(aq)$