4. For each of the following acids:

- write the ionization reaction in water and the Ka expression
- write the ionization reaction for its conjugate base and Kb expression
- calculate the value of Kb for the conjugate base
a) benzoic acid

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{1-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$
$\mathrm{Ka}=\left[\mathrm{C}_{6} \underline{\mathrm{H}_{5}} \underline{\left.\underline{\mathrm{COCO}}_{6} \mathrm{COH}_{5}\right]\left[\mathrm{H}_{3} \underline{\mathrm{O}^{1+}}\right]}\right.$

$$
=6.3 \times 10^{-5} \quad(\text { from page } 597)
$$

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\begin{aligned}
\mathrm{Kb} & \left.=\frac{\left[\mathrm{C}_{6}\right.}{6} \frac{\mathrm{H}_{5}}{\left[\mathrm{COOH}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]} \mathrm{OH}^{1-}\right] \\
& =\mathrm{Kw} / \mathrm{Ka} \\
& =1.0 \times 10^{-14} / 6.3 \times 10^{-5} \\
& =1.6 \times 10^{-10}
\end{aligned}
$$

b) hydrofluoric acid

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{F}^{1-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$
$\mathrm{Ka}=\frac{\left[\mathrm{F}^{1-}\right]\left[\mathrm{H}_{3}\right.}{[\mathrm{OF}]}-\frac{\left.\mathrm{O}^{1+}\right]}{[\mathrm{H}}$

$$
=6.3 \times 10^{-4}(\text { from page } 597)
$$

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water:
$\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \leftrightarrow \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\begin{aligned}
\mathrm{Kb} & =\frac{[\mathrm{HF}]\left[\mathrm{OH}^{1-}\right]}{\left[\mathrm{F}^{-}\right]} \\
& =\mathrm{Kw} / \mathrm{Ka} \\
& =1.0 \times 10^{-14} / 6.3 \times 10^{-4} \\
& =1.6 \times 10^{-11}
\end{aligned}
$$

c) iodic acid HIO_{3}

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{HIO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{IO}_{3}{ }^{1-}(\mathrm{aq}) \quad+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$
$\mathrm{Ka}=\frac{\left[\mathrm{IO}_{3} \underline{3}^{1-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]}{\left[\mathrm{HIO}_{3}\right]}$
$=1.7 \times 10^{-1} \quad$ (from page 597)

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water:
$\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HIO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\begin{aligned}
\mathrm{Kb} & =\frac{\left[\mathrm{HIO}_{3}\right]\left[\mathrm{OH}^{1-}\right]}{\left[\mathrm{IO}_{3}{ }^{-}\right]} \\
& =\mathrm{Kw} / \mathrm{Ka} \\
& =1.0 \times 10^{-14} / 1.7 \times 10^{-1} \\
& =5.9 \times 10^{-14}
\end{aligned}
$$

d) $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}(\mathrm{aq})$

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \leftrightarrow \quad \mathrm{HBO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$
$\mathrm{Ka}=\left[\mathrm{HBO}_{3}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$
$\left[\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}\right]$
$<1.0 \times 10^{-14} \quad$ (from table E. 10 on page 597)

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water:

$$
\begin{aligned}
& \mathrm{HBO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{Kb}=\left[\mathrm{H}_{2} \underline{\mathrm{BO}_{3}}{ }_{3}{ }^{--}\right]\left[\mathrm{OH}^{1}\right] \\
&=\mathrm{Kw} / \mathrm{Ka} \\
&=1.0 \times 10^{-14} /<1.0 \times 10^{-14} \\
&>1\left(\mathrm{so} \mathrm{HBO}_{3}{ }^{2-} \text { is a very strong base }\right)
\end{aligned}
$$

e) $\mathrm{HCO}_{3}{ }^{1-}(\mathrm{aq})$

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{HCO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$
$\mathrm{Ka}=\frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]}{\left[\mathrm{HCO}_{3}{ }^{-{ }^{-}}\right]}$
$=4.7 \times 10^{-11} \quad($ from table E. 10 on page 597)

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water:

$$
\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HCO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{Kb}=\frac{\left[\mathrm{HCO}_{3}{ }^{1-}\right]\left[\mathrm{OH}^{1-}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}
$$

$$
=\mathrm{Kw} / \mathrm{Ka}
$$

$$
=1.0 \times 10^{-14} / 4.7 \times 10^{-11}
$$

$$
=2.1 \times 10^{-4}
$$

5. For each of the following bases:

- write the ionization reaction in water and the Kb expression
- write the ionization reaction for its conjugate acid and Ka expression
- calculate the value of Ka for the conjugate acid
a) hydroxlamine

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water. Add a hydrogen ion ($\mathrm{H}+$) to the original compound:
$\mathrm{NH}_{2} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \leftrightarrow \quad \mathrm{NH}_{3} \mathrm{OH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\begin{aligned}
\mathrm{Kb} & =\frac{\left[\mathrm{NH}_{3} \mathrm{OH}^{+}\right]\left[\mathrm{OH}^{1-}\right]}{\left[\mathrm{NH}_{2} \mathrm{OH}\right]} \\
& =8.8 \times 10^{-9} \quad(\text { from table E. } 11 \text { on page } 597)
\end{aligned}
$$

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:

$$
\mathrm{NH}_{3} \mathrm{OH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{2} \mathrm{OH}(\mathrm{aq}) \quad+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})
$$

$$
\mathrm{Ka}=\left[\mathrm{NH}_{2} \underline{\mathrm{OH}]\left[\mathrm{H}_{3}\right.} \underline{\mathrm{O}^{1+}}\right]
$$

$$
\left[\mathrm{NH}_{3} \mathrm{OH}^{+}\right]
$$

$$
=\mathrm{Kw} / \mathrm{Kb}
$$

$$
=1.0 \times 10^{-14} / 8.8 \times 10^{-9}
$$

$$
=1.1 \times 10^{-6}
$$

b) ethanamine

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water. Add a hydrogen ion ($\mathrm{H}+$) to the original compound:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Kb}=\left[\mathrm{C}_{2} \underline{H}_{5} \underline{\mathrm{NH}}_{3}{ }^{+}\right]\left[\mathrm{OH}^{1-}\right]$
[$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$]
$=4.5 \times 10^{-4} \quad$ (from table E. 11 on page 597)
The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})
$$

$\mathrm{Ka}=\left[\mathrm{C}_{2} \underline{H}_{5} \underline{\mathrm{NH}_{2}}\right]\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$
$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]$
$=\mathrm{Kw} / \mathrm{Kb}$
$=1.0 \times 10^{-14} / 4.5 \times 10^{-4}$
$=2.2 \times 10^{-11}$
c) urea

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water. Add a hydrogen ion ($\mathrm{H}+$) to the original compound:
$\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{2} \mathrm{CONH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Kb}=\left[\mathrm{NH}_{2} \mathrm{CONH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{1}\right]$
$\left[\mathrm{NH}_{2} \mathrm{CONH}_{2}\right]$
$=1.3 \times 10^{-14} \quad$ (from table E. 11 on page 597)
The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{NH}_{2} \mathrm{CONH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \leftrightarrow \quad \mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$

$$
\begin{aligned}
\mathrm{Ka} & =\frac{\left[\mathrm{NH}_{2} \mathrm{CONH}_{2}\right]\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]}{\left[\mathrm{NH}_{2} \mathrm{CONH}_{3}^{+}\right]} \\
& =\mathrm{Kw} / \mathrm{Kb} \\
& =1.0 \times 10^{-14} / 1.3 \times 10^{-14} \\
& =0.77 \quad \text { (quite a strong acid) }
\end{aligned}
$$

d) $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}(\mathrm{aq})$

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water. Add a hydrogen ion (H^{+}) to the original compound:
$\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Kb}=\frac{\left[\mathrm{H}_{3}-\frac{\mathrm{BO}_{3}}{3}\right]\left[\mathrm{OH}^{1-}\right]}{\left[\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-{ }^{-}}\right]}$
We only know the Ka for $\mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq})=5.4 \times 10^{-10}$ (from table E .10 on page 597), so we can calculate Kb using this value:
$\mathrm{Kb}=\mathrm{Kw} / \mathrm{Ka}$
$=1.0 \times 10^{-14} / 5.4 \times 10^{-10}$
$=1.85 \times 10^{-5} \quad$ or $1.9 \times 10^{-5}(2 \mathrm{sd})$

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$
$\mathrm{Ka}=\frac{\left[\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{1-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]}$
$=5.4 \times 10^{-10} \quad$ (from table E. 10 on page 597)
e) $\mathrm{HCO}_{3}{ }^{1-}(\mathrm{aq})$

The K_{b} equation shows the ionization and dissociation of the base to form OH^{-}in water. Add a hydrogen ion ($\mathrm{H}+$) to the original compound:
$\mathrm{HCO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}\left((\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})\right.$
$\mathrm{Kb}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{OH}^{1-}\right]$
$\left[\mathrm{HCO}_{3}{ }^{1-}\right.$]
We only know the Ka for $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})=4.5 \times 10^{-7} \quad$ (from table E .10 on page 597), so we can calculate Kb using this value:

$$
\begin{aligned}
\mathrm{Kb} & =\mathrm{Kw} / \mathrm{Ka} \\
& =1.0 \times 10^{-14} / 4.5 \times 10^{-7} \\
& =2.2 \times 10^{-8}
\end{aligned}
$$

The K_{a} equation shows the ionization and dissociation of the acid to form $\mathrm{H}_{3} \mathrm{O}^{+}$in water:
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HCO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{1+}(\mathrm{aq})$
$\mathrm{Ka}=\frac{\left[\mathrm{HCO}_{3}{ }_{3}{ }^{1-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
$=4.5 \times 10^{-7} \quad$ (from table E. 10 on page 597)
6. Given the relationship $\mathrm{K}_{\mathrm{a}} \cdot \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$, complete the following statements:
a) If the K_{a} for an acid is large, the K_{b} for its conjugate base is: small
b) If the K_{a} for an acid is small, the K_{b} for its conjugate base is: large
c) If the K_{b} for a base is large, the K_{a} for its conjugate acid is: small
d) If the K_{b} for a base is small, the K_{a} for its conjugate acid is: large

