Unit 7, Lesson 05: Answers to Working with Ka, Kb and Kw

- 4. For each of the following acids:
- write the ionization reaction in water and the Ka expression
- write the ionization reaction for its conjugate base and Kb expression
- calculate the value of Kb for the conjugate base
- a) benzoic acid

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

 $C_{6}H_{5}COOH (aq) + H_{2}O (l) \leftrightarrow C_{6}H_{5}COO^{1-} (aq) + H_{3}O^{1+} (aq)$ $Ka = \underbrace{[C_{6}H_{5}COO^{1-}][H_{3}O^{1+}]}_{[C_{6}H_{5}COOH]}$ $= 6.3 \times 10^{-5} \quad \text{(from page 597)}$

The K_b equation shows the ionization and dissociation of the base to form OH⁻ in water:

$$C_{6}H_{5}COO^{-}(aq) + H_{2}O(l) \leftrightarrow C_{6}H_{5}COOH(aq) + OH^{-}(aq)$$

$$Kb = \underbrace{[C_{6}H_{5}COO^{-}]}_{[C_{6}H_{5}COO^{-}]}$$

$$= Kw / Ka$$

$$= 1.0 \times 10^{-14} / 6.3 \times 10^{-5}$$

$$= 1.6 \times 10^{-10}$$

b) hydrofluoric acid

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

HF (aq) + H₂O (l) ↔ F¹⁻ (aq) + H₃O¹⁺ (aq)
Ka =
$$[F^{1-}][H_3O^{1+}]$$

[HF]
= 6.3 x 10⁻⁴ (from page 597)

The K_b equation shows the ionization and dissociation of the base to form OH⁻ in water:

F⁻ (aq) + H₂O (l) ↔ HF (aq) + OH⁻ (aq)
Kb =
$$[HF][OH^{1-}]$$

= Kw / Ka
= 1.0 x 10⁻¹⁴ / 6.3 x 10⁻⁴
= 1.6 x 10⁻¹¹

The K_a equation shows the ionization and dissociation of the acid to form $\mathbf{H_3O^+}$ in water:

HIO₃ (aq) + H₂O (l) ↔ IO₃¹⁻ (aq) + H₃O¹⁺ (aq)
Ka =
$$[IO_3^{1-}][H_3O^{1+}]$$

[HIO₃]
= 1.7 x 10⁻¹ (from page 597)

The K_b equation shows the ionization and dissociation of the base to form OH^- in water:

$$IO_{3}^{-}(aq) + H_{2}O(l) \leftrightarrow HIO_{3}(aq) + OH^{-}(aq)$$

$$Kb = [HIO_{3}][OH^{1-}]_{[IO_{3}^{-}]}$$

$$= Kw / Ka$$

$$= 1.0 \times 10^{-14} / 1.7 \times 10^{-1}$$

$$= 5.9 \times 10^{-14}$$

d) $H_2BO_3^{1-}(aq)$

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

$$H_{2}BO_{3}^{1-} (aq) + H_{2}O (l) \leftrightarrow HBO_{3}^{2-} (aq) + H_{3}O^{1+} (aq)$$

Ka = [HBO_{3}^{2-}][H_{3}O^{1+}]
[H_{2}BO_{3}^{1-}]
< 1.0 x 10^{-14} (from table E.10 on page 597)

The K_b equation shows the ionization and dissociation of the base to form OH^- in water:

$$HBO_{3}^{2-}(aq) + H_{2}O(l) \leftrightarrow H_{2}BO_{3}^{1-}(aq) + OH^{-}(aq)$$

$$Kb = \underbrace{[H_{2}BO_{3}^{1-}][OH^{1-}]}_{[HBO_{3}^{2-}]}$$

$$= Kw / Ka$$

$$= 1.0 \times 10^{-14} / < 1.0 \times 10^{-14}$$

$$> 1 \text{ (so HBO_{3}^{2-} is a very strong base)}$$

e) $HCO_3^{1-}(aq)$

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

$$HCO_{3}^{1-} (aq) + H_{2}O(l) \leftrightarrow CO_{3}^{2-} (aq) + H_{3}O^{1+} (aq)$$

Ka = $\underbrace{[CO_{3}^{2-}][H_{3}O^{1+}]}_{[HCO_{3}^{1-}]}$
= 4.7 x 10⁻¹¹ (from table E.10 on page 597)

The K_b equation shows the ionization and dissociation of the base to form OH⁻ in water:

$$CO_{3}^{2-}(aq) + H_{2}O(1) \leftrightarrow HCO_{3}^{1-}(aq) + OH^{-}(aq)$$

Kb = [HCO_{3}^{1-}][OH^{1-}]
[CO_{3}^{2-}]
= Kw / Ka
= 1.0 x 10^{-14} / 4.7 x 10^{-11}
= 2.1 x 10^{-4}

- 5. For each of the following bases:
- write the ionization reaction in water and the Kb expression
- write the ionization reaction for its conjugate acid and Ka expression
- calculate the value of Ka for the conjugate acid
- a) hydroxlamine

The K_b equation shows the ionization and dissociation of the base to form OH^- in water. Add a hydrogen ion (H+) to the original compound:

NH₂OH (aq) + H₂O (l) ↔ NH₃OH⁺ (aq) + OH⁻ (aq)
Kb =
$$[NH_3OH^+][OH^{1-}]$$

[NH₂OH]
= 8.8 x 10⁻⁹ (from table E.11 on page 597)

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

NH₃OH⁺ (aq) + H₂O (l) ↔ NH₂OH (aq) + H₃O¹⁺ (aq)
Ka =
$$[NH_2OH][H_3O^{1+}][NH_3OH^+]$$

= Kw / Kb
= 1.0 x 10⁻¹⁴ / 8.8 x 10⁻⁹
= 1.1 x 10⁻⁶

The K_b equation shows the ionization and dissociation of the base to form OH^- in water. Add a hydrogen ion (H+) to the original compound:

$$C_{2}H_{5}NH_{2} (aq) + H_{2}O (l) \leftrightarrow C_{2}H_{5}NH_{3}^{+} (aq) + OH^{-} (aq)$$

Kb = [C₂H₅NH₃⁺][OH¹⁻]
[C₂H₅NH₂]
= 4.5 x 10⁻⁴ (from table E.11 on page 597)

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

$$C_{2}H_{5}NH_{3}^{+}(aq) + H_{2}O(l) \leftrightarrow C_{2}H_{5}NH_{2}(aq) + H_{3}O^{1+}(aq)$$

$$Ka = \underbrace{[C_{2}H_{5}NH_{2}][H_{3}O^{1+}]}_{[C_{2}H_{5}NH_{3}^{+}]}$$

$$= Kw / Kb$$

$$= 1.0 \times 10^{-14} / 4.5 \times 10^{-4}$$

$$= 2.2 \times 10^{-11}$$

c) urea

The K_b equation shows the ionization and dissociation of the base to form OH^- in water. Add a hydrogen ion (H+) to the original compound:

 $NH_{2}CONH_{2} (aq) + H_{2}O (l) \leftrightarrow NH_{2}CONH_{3}^{+} (aq) + OH^{-} (aq)$ $Kb = \underbrace{[NH_{2}CONH_{3}^{+}][OH^{1-}]}_{[NH_{2}CONH_{2}]}$ $= 1.3 \times 10^{-14} \text{ (from table E.11 on page 597)}$

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

NH₂CONH₃⁺ (aq) + H₂O (l) ↔ NH₂CONH₂ (aq) + H₃O¹⁺ (aq) Ka = $[NH_2CONH_2][H_3O^{1+}]$ [NH₂CONH₃⁺] = Kw / Kb = 1.0 x 10⁻¹⁴ / 1.3 x 10⁻¹⁴ = 0.77 (quite a strong acid) d) $H_2BO_3^{1-}(aq)$

The K_b equation shows the ionization and dissociation of the base to form OH^- in water. Add a hydrogen ion (H+) to the original compound:

 $H_{2}BO_{3}^{1-} (aq) + H_{2}O (l) \leftrightarrow H_{3}BO_{3} (aq) + OH^{-} (aq)$ $Kb = \underbrace{[H_{3}BO_{3}][OH^{1-}]}_{[H_{2}BO_{3}^{1-}]}$

We only know the Ka for H_3BO_3 (aq) = 5.4 x 10⁻¹⁰ (from table E.10 on page 597), so we can calculate Kb using this value:

Kb = Kw / Ka
=
$$1.0 \ge 10^{-14}$$
 / $5.4 \ge 10^{-10}$
= $1.85 \ge 10^{-5}$ or $1.9 \ge 10^{-5}$ (2 sd)

The K_a equation shows the ionization and dissociation of the acid to form H₃O⁺ in water:

 $H_{3}BO_{3}(aq) + H_{2}O(1) \leftrightarrow H_{2}BO_{3}^{1-}(aq) + H_{3}O^{1+}(aq)$ Ka = [H₂BO₃¹⁻][H₃O¹⁺] [H₃BO₃] = 5.4 x 10⁻¹⁰ (from table E.10 on page 597)

e) $HCO_3^{1-}(aq)$

The K_b equation shows the ionization and dissociation of the base to form OH^- in water. Add a hydrogen ion (H+) to the original compound:

$$HCO_{3}^{1-}(aq) + H_{2}O(l) \leftrightarrow H_{2}CO_{3}((aq) + OH^{-}(aq))$$

$$Kb = [\underline{H_{2}CO_{3}}][OH^{1-}]$$

$$[HCO_{3}^{1-}]$$

We only know the Ka for H_2CO_3 (aq) = 4.5×10^{-7} (from table E.10 on page 597), so we can calculate Kb using this value:

$$Kb = Kw / Ka$$

= 1.0 x 10⁻¹⁴ / 4.5 x 10⁻⁷
= 2.2 x 10⁻⁸

The K_a equation shows the ionization and dissociation of the acid to form H_3O^+ in water:

$$H_2CO_3 (aq) + H_2O (l) \leftrightarrow HCO_3^{1-} (aq) + H_3O^{1+} (aq)$$

Ka = [HCO_3^{1-}][H_3O^{1+}]
[H_2CO_3]
= 4.5 x 10⁻⁷ (from table E.10 on page 597)

- 6. Given the relationship $K_a \cdot K_b = K_w$, complete the following statements:
- a) If the K_a for an acid is large, the K_b for its conjugate base is: small
- b) If the K_a for an acid is small, the K_b for its conjugate base is: <u>large</u>
- c) If the K_b for a base is large, the K_a for its conjugate acid is: small
- d) If the K_b for a base is small, the K_a for its conjugate acid is: <u>large</u>