Page 400, Q 19 - 24

19. Calculate the pH and percent dissociation of 0.83 M solution of vinegar:

$$HCH_{3}COO_{(aq)} + H_{2}O_{(l)} \leftrightarrow CH_{3}COO^{1-}_{(aq)} + H_{3}O^{+}_{(aq)} Ka = 1.8 \times 10^{-5} (p. 597)$$

	HCH ₃ COO _(aq) ←	\Rightarrow CH ₃ COO ¹⁻ (aq) -	H ₃ O ⁺ _(aq)
Ι	0.83 M	0	0
С	- x	+ x	+ x
Е	0.83 - x	Х	Х

$Ka = [CH_3COO^{1-}] [H_3O^+]$	Can we ignore the –x?	
[HCH ₃ COO]	0.83	is much greater than 500, so ignore -x
$1.8 \times 10^{-5} = \frac{x^2}{0.82}$	1.8 x 10 ⁻⁵	
0.83 x = 3.865 x 10 ⁻³ mol/L		

so
$$[H_3O^+]$$
 at eq'm = 3.865 x 10⁻³ mol/L

$$pH = -\log [3.865 \times 10^{-3}]$$

= 2.41 (2 decimals, because 2 sd)

% dissociation = $\underline{[H_3O^+]}$ x 100% [HCH₃COO]

$$= \frac{3.9 \times 10^{-3} \text{ mol/L}}{0.83 \text{ mol/L}} \times 100\%$$

= 0.47% dissociated

20. Calculate the Ka of a 0.10 M solution of barbituric acid if it has a pH of 2.50.

 $C_{4}H_{4}N_{2}O_{3~(aq)} \ + \ H_{2}O_{~(l)} \ \leftrightarrow \qquad C_{4}H_{3}N_{2}O_{3}^{-l_{-}}{}_{(aq)} \ + \ H_{3}O^{+}{}_{(aq)}$ Ka = ?

	$C_4H_4N_2O_3$ (aq)	\Leftrightarrow	$C_4H_3N_2O_3 \stackrel{1-}{}_{(aq)}$	$+$ $H_3O^+_{(aq)}$
Ι	0.10 M		0	0
С	- x		+ x	+ x
Е	0.10 - x		Х	X

Ka =
$$[\underline{C_4H_3N_2O_3}^{1-}] [\underline{H_3O^+}]$$

 $[C_4H_4N_2O_3]$
= $[\underline{0.003162}]^2$
 0.10
= $1.00 \times 10^{-4} \text{ mol/L}$

We know pH = 2.50, so we can find $[H_3O^+]$ $[\mathrm{H}_{3}\mathrm{O}^{+}] = 10^{\mathrm{x}} \ [-2.50]$ = 0.003162 M = x

% dissociation = $\underline{[H_3O^+]}$ x 100% $\underline{[C_4H_4N_2O_3]}$ = 0.003162 mol/L x 100%0.10 mol/L = 3.2% dissociated

21. Calculate the pH of 0.0100 M solution of HF:

 $HF_{(aq)} + H_2O_{(l)} \leftrightarrow F^{1-}_{(aq)} + H_3O^+_{(aq)} Ka = 6.3 \times 10^{-4} (p. 597)$

	HF (aq)	\Rightarrow $F^{1-}_{(aq)}$ -	H ₃ O ⁺ _(aq)
Ι	0.0100 M	0	0
С	- x	+ x	+ x
Е	0.0100 - x	Х	Х

Ka = $[F^{1-}]$ $[H_3O^+]$	Can we ignore the –x?	
$[HF] = x^{2}$	$\frac{0.0100}{6.3 \times 10^{-4}}$	is less than than 500, so must use the quadratic formula
(0.0100 - x)		

 $-x^{2} - 6.3 \times 10^{-4} \times x + 6.3 \times 10^{-6} = 0$ or $x^{2} + 6.3 \times 10^{-4} \times x - 6.3 \times 10^{-6} = 0$

x = 0.002215 or x = -0.002845 (inadmissible) so, $[H_3O^+] = 0.002215$ mol/L

 $pH = -\log[0.002215]$

= 2.65 (2 decimals, because 2 sd)

22. What is Ka for HClO if a 0.40 M solution is 0.027% dissociated?

if HClO is 0.027% dissociated, then $[H_3O^+] = 0.00027 \text{ x } 0.40 \text{ M}$

$$= 0.000108 \text{ mol/L} = [ClO-]$$

Ka =
$$[ClO^{1-}] [H_{3}O^{+}]$$

[HClO]
= $[0.000108] [0.000108]$
[0.40]
= 2.9 x 10⁻⁸

23. Calculate the pH of 1.0×10^{-2} M solution of butanoic acid:

$HC_4H_7O_2$ (aq) +	$H_2O_{(1)} \leftrightarrow C_4H_7O_2^{1-}$	$_{aq)}$ + $\mathrm{H_{3}O^{+}}_{(aq)}$	$Ka = 1.51 \times 10^{-5}$
	HCH ₃ COO (aq) ←	\Rightarrow CH ₃ COO ¹⁻ (aq)	$+$ $H_3O^+_{(aq)}$
Ι	0.010 M	0	0
С	- x	+ x	+ x
Е	0.010 - x	Х	Х
		Can we ignore the $-x$? $\frac{0.010}{1.51 \times 10^{-5}}$ is much groups	eater than 500, so ignore -x
$x = 3.89 \times 10^{-2}$	⁴ mol/L		

so $[H_3O^+]$ at eq'm = 3.89 x 10⁻⁴ mol/L

 $pH = -\log [3.89 \times 10^{-4}]$

= 3.41 (2 decimals, because 2 sd)

24. Calculate the concentration of a solution of caproic acid if it has a pH of 2.94.

 $C_5H_{11}COOH_{(aq)} + H_2O_{(l)} \leftrightarrow C_5H_{11}COO^{1-}_{(aq)} + H_3O^+_{(aq)} Ka = 1.3 \times 10^{-5}$

We know pH = 2.94, so we can find $[H_3O^+]$

 $[H_3O^+] = 10^x [-2.94]$ = 0.001148 M = $[C_5H_{11}COO^{1-}]$

If the original concentration of $C_5H_{11}COOH$ before dissociation was "x", then after dissociation, the [$C_5H_{11}COOH$] = x - 0.001148 mol/L

Ka =
$$[C_5H_{11}COO^{1-}][H_3O^+]$$

[C₅H₁₁COOH]
1.3 x 10⁻⁵ = $[0.001148]^2$
[x - 0.001148]

x = 0.102 mol/L concentration of solution

There were 100 mL of solution, so calculate moles:

$$n = C \times V$$

- = 0.102 mol/L x 100 mL
- = 0.0102 mol of caproic acid

Now find the mass of caproic acid needed to make this solution:

 $m = n \times MM$

- = 0.0102 mol x 116.18 g/mol
- = 1.185 g of caproic acid in 100 mL of solution
- = 1.2 g of caproic acid (2 sig digs, from Ka)

(I think the text book messed up, it should have been a volume of 100.0 mL or they considered 100 mL to have 3 sd).

Questions 25 - 28 on pages 402 - 403

25. Calculate the pH of 0.00050 mol/L solution of carbonic acid:

 $H_2CO_3_{(aq)} + H_2O_{(l)} \leftrightarrow HCO_3^{1-}_{(aq)} + H_3O^+_{(aq)}$ $Ka = 4.5 \times 10^{-7}$ + \Leftrightarrow HCO_3^{1-} $H_3O^+_{(aq)}$ H_2CO_3 (aq) (aq) I 0.00050 M 0 0 С + x +x- X Е 0.00050 - x Х Х Can we ignore the -x? $= [\underline{HCO_3}^{1-}] [\underline{H_3O^+}]$ $[\underline{H_2CO_3}]$ Ka is greater than 500, so ignore -x 0.00050

4.5 x 10⁻⁷

 $4.5 \ge 10^{-7} = \frac{x^2}{0.00050}$

 $x = 1.5 \times 10^{-5} \text{ mol/L}$

so $[H_3O^+]$ at eq'm = 1.5 x 10⁻⁵ mol/L

 $pH = -\log [1.5 \times 10^{-5}]$

= 4.82 (2 decimals, because 2 sd)

To calculate the concentration of CO_3^{2-} in solution, we need to use the second dissociation reaction, and the concentration of H_3O^+ and HCO_3^{1-} determined in the first calculation:

 $HCO_3^{1-}{}_{(aq)} + H_2O_{(l)} \leftrightarrow CO_3^{2-}{}_{(aq)} + H_3O^+{}_{(aq)} Ka = 4.7 \times 10^{-11}$

	HCO ₃ ¹⁻ (aq)	CO3 ²⁻ (aq)	H ₃ O ⁺ (aq)
Ι	1.5 x 10 ⁻⁵ mol/L	0	1.5 x 10 ⁻⁵ mol/L
С	- x	+ x	+ x
Е	1.5 x 10 ⁻⁵ - x	Х	$1.5 \times 10^{-5} + x$

Ka =
$$\frac{[CO_3^{2^-}] [H_3O^+]}{[HCO_3^{1^-}]}$$

4.7 x 10⁻¹¹ = $\frac{[x][1.5 x 10^{-5}]}{1.5 x 10^{-5}}$

The value of x for the second dissociation is going to be so small, we can ignore it for both of these terms.

and $x = 4.7 \times 10^{-11}$

So, the concentration of CO_3^{2-} in solution is 4.7 x 10^{-11} mol/L

The remaining problems are similar to those shown above. The number of ions contributed by the second dissociation is negligible, so calculate pH based on the first dissociation only.