Unit 7, Lesson 06: Answers to Homework

Page 400, Q 19-24
19. Calculate the pH and percent dissociation of 0.83 M solution of vinegar:
$\mathrm{HCH}_{3} \mathrm{COO}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{1-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \quad \mathrm{Ka}=1.8 \times 10^{-5}$ (p. 597)

$\mathrm{x}=3.865 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at eq' $\mathrm{m}=3.865 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=-\log \left[3.865 \times 10^{-3}\right]$
$=2.41$ (2 decimals, because 2 sd)

$$
\begin{aligned}
\% \text { dissociation } & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HCH}_{3} \mathrm{COO}\right]} \times 100 \% \\
& =\frac{3.9 \times 10^{-3} \mathrm{~mol} / \mathrm{L}}{0.83 \mathrm{~mol} / \mathrm{L}} \times 100 \% \\
& =0.47 \% \text { dissociated }
\end{aligned}
$$

20. Calculate the Ka of a 0.10 M solution of barbituric acid if it has a pH of 2.50 .
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3(\text { aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \quad \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{1-}{ }_{\text {(aq) }}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }} \quad \mathrm{Ka}=?$

	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3(\mathrm{aq})}$	\Longleftrightarrow	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{1-}{ }_{\text {(aq) }}+$
I	0.10 M	0	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$
C	-x	+x	0
E	$0.10-\mathrm{x}$	x	+x

$$
\begin{aligned}
\mathrm{Ka} & =\left[\mathrm{C}_{4} \underline{\mathrm{H}}_{3} \underline{\mathrm{~N}}_{2} \underline{\mathrm{~N}}_{2} \underline{\mathrm{O}}_{3} \frac{{ }_{3}}{\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right]}\right]\left[\mathrm{H}_{3} \underline{\mathrm{O}}^{+}\right] \\
& =\frac{[0.003162]^{2}}{0.10} \\
& =1.00 \times 10^{-4} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

We know $\mathrm{pH}=2.50$, so we can find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =10^{\mathrm{x}}[-2.50] \\
& =0.003162 \mathrm{M} \\
& =\mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
\% \text { dissociation } & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right]} \times 100 \% \\
& =\frac{0.003162 \mathrm{~mol} / \mathrm{L} \times 100 \%}{0.10 \mathrm{~mol} / \mathrm{L}} \times 1 \\
& =3.2 \% \text { dissociated }
\end{aligned}
$$

21. Calculate the pH of 0.0100 M solution of HF :

$$
\mathrm{HF}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{F}^{1-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \quad \mathrm{Ka}=6.3 \times 10^{-4}(\mathrm{p} .597)
$$

	HF (aq)	$\mathrm{F}^{1-}{ }_{\text {(aq) }}$	$+\quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
I	0.0100 M	0	0
C	- x	+ x	+ x
E	0.0100 - x	x	x
$\begin{aligned} & \mathrm{Ka}=\frac{\left[\mathrm{F}^{1}\right]\left[\mathrm{H}_{3}\right.}{[\mathrm{O}} \underline{\left.\mathrm{O}^{+}\right]} \\ & 6.3 \times 10^{-4}=\underline{\mathrm{xF}^{2}} \end{aligned}$		Can we ignore the $\frac{0.0100}{6.3 \times 10^{-4}}$	than than 500 , so must use adratic formula

$-x^{2}-6.3 \times 10^{-4} \mathrm{x}+6.3 \times 10^{-6}=0 \quad$ or $\quad \mathrm{x}^{2}+6.3 \times 10^{-4} \mathrm{x}-6.3 \times 10^{-6}=0$
$\mathrm{x}=0.002215$ or $\mathrm{x}=-0.002845$ (inadmissible) \quad so, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.002215 \mathrm{~mol} / \mathrm{L}$

$$
\mathrm{pH}=-\log [0.002215]
$$

$$
=2.65(2 \text { decimals, because } 2 \mathrm{sd})
$$

22. What is Ka for HClO if a 0.40 M solution is 0.027% dissociated?
if HClO is 0.027% dissociated, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.00027 \times 0.40 \mathrm{M}$

$$
=0.000108 \mathrm{~mol} / \mathrm{L}=[\mathrm{ClO}-]
$$

$$
\begin{aligned}
\mathrm{Ka} & =\frac{\left[\mathrm{ClO}^{1-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HClO}]} \\
& =\frac{[0.000108][0.000108]}{[0.40]} \\
& =2.9 \times 10^{-8}
\end{aligned}
$$

23. Calculate the pH of $1.0 \times 10^{-2} \mathrm{M}$ solution of butanoic acid:
$\mathrm{HC}_{4} \mathrm{H}_{7} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \quad \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}{ }^{1-}{ }_{(\text {aq) }}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }} \quad \mathrm{Ka}=1.51 \times 10^{-5}$

	$\mathrm{HCH}_{3} \mathrm{COO}_{(\mathrm{aq})}$	\Longleftrightarrow	$\mathrm{CH}_{3} \mathrm{COO}^{1-}{ }_{\text {(aq) }}$
I	0.010 M	0	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$
C	-x	+x	0
E	$0.010-\mathrm{x}$	x	+x

$$
\mathrm{Ka}=\frac{\left[\mathrm{C}_{4} \underline{\mathrm{H}}_{3} \underline{\mathrm{O}}_{2}\right]\left[\mathrm{H}_{3} \underline{\mathrm{O}}^{+}\right]}{\left[\mathrm{HC}_{4} \mathrm{H}_{7} \mathrm{O}_{2}\right]}
$$

$1.51 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.010}$

Can we ignore the $-x$?
$\frac{0.010}{1.51 \times 10^{-5}}$ is much greater than 500 , so ignore -x
$\mathrm{x}=3.89 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at eq'm $=3.89 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=-\log \left[3.89 \times 10^{-4}\right]$
$=3.41$ (2 decimals, because 2 sd)
24. Calculate the concentration of a solution of caproic acid if it has a pH of 2.94.

$$
\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \quad \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COO}^{1-} \text { (aq) }+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }} \quad \mathrm{Ka}=1.3 \times 10^{-5}
$$

We know $\mathrm{pH}=2.94$, so we can find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =10^{\mathrm{x}}[-2.94] \\
& =0.001148 \mathrm{M}=\left[\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COO}^{1-}\right]
\end{aligned}
$$

If the original concentration of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COOH}$ before dissociation was " x ", then after dissociation, the $\left[\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COOH}\right]=\mathrm{x}-0.001148 \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
& \mathrm{Ka}=\frac{\left[\mathrm{C}_{5} \underline{\mathrm{H}}_{11}\right.}{\left[\mathrm{COC}_{5} \mathrm{COO}_{11} \mathrm{HOOH}_{3}-\mathrm{H}_{3} \underline{\mathrm{O}}^{+}\right]} \\
& 1.3 \times 10^{-5}=\frac{[0.001148]^{2}}{[\mathrm{x}-0.001148]} \\
& \quad \mathrm{x}=0.102 \mathrm{~mol} / \mathrm{L} \text { concentration of solution }
\end{aligned}
$$

There were 100 mL of solution, so calculate moles:

$$
\begin{aligned}
\mathrm{n} & =\mathrm{C} \times \mathrm{V} \\
& =0.102 \mathrm{~mol} / \mathrm{L} \times 100 \mathrm{~mL} \\
& =0.0102 \mathrm{~mol} \text { of caproic acid }
\end{aligned}
$$

Now find the mass of caproic acid needed to make this solution:

$$
\begin{aligned}
\mathrm{m} & =\mathrm{n} \times \mathrm{MM} \\
& =0.0102 \mathrm{~mol} \times 116.18 \mathrm{~g} / \mathrm{mol} \\
& =1.185 \mathrm{~g} \text { of caproic acid in } 100 \mathrm{~mL} \text { of solution } \\
& =1.2 \mathrm{~g} \text { of caproic acid }(2 \mathrm{sig} \text { digs, from } \mathrm{Ka})
\end{aligned}
$$

(I think the text book messed up, it should have been a volume of 100.0 mL or they considered 100 mL to have 3 sd).

Questions 25-28 on pages 402-403
25. Calculate the pH of $0.00050 \mathrm{~mol} / \mathrm{L}$ solution of carbonic acid:
$\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \quad \mathrm{HCO}_{3}{ }^{1-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \quad \mathrm{Ka}=4.5 \times 10^{-7}$

$\mathrm{x}=1.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at eq'm $=1.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=-\log \left[1.5 \times 10^{-5}\right]$
$=4.82(2$ decimals, because 2 sd$)$
To calculate the concentration of $\mathrm{CO}_{3}{ }^{2-}$ in solution, we need to use the second dissociation reaction, and the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{HCO}_{3}{ }^{1-}$ determined in the first calculation:
$\mathrm{HCO}_{3}{ }^{1-}{ }_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{CO}_{3}{ }^{2-}$ (aq) $+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }} \quad \mathrm{Ka}=4.7 \times 10^{-11}$

	$\mathrm{HCO}_{3}{ }^{1-}{ }_{(\mathrm{aq})}$	$\mathrm{CO}_{3}{ }^{2-}{ }_{\text {(aq) }}$	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}$
I	$1.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$	0	$1.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
C	-x	+x	+x
E	$1.5 \times 10^{-5}-\mathrm{x}$	x	$1.5 \times 10^{-5}+\mathrm{x}$

$\mathrm{Ka}=\left[\mathrm{CO}_{3} \underline{2-}^{2-}\right]\left[\mathrm{H}_{3} \underline{\mathrm{O}}^{+}\right]$
The value of x for the second dissociation is going to be so small, we can ignore it for both of these terms.
$4.7 \times 10^{-11}=\frac{[\mathrm{x}]\left[1.5 \times 10^{-5}\right]}{1.5 \times 10^{-5}}$
and $\mathrm{x}=4.7 \times 10^{-11}$
So, the concentration of $\mathrm{CO}_{3}{ }^{2-}$ in solution is $4.7 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$

The remaining problems are similar to those shown above. The number of ions contributed by the second dissociation is negligible, so calculate pH based on the first dissociation only.

