Unit 7, Lesson 08: The pH of Salt Solutions, Answers

1. Complete the following chart:

Ion	Parent Acid or Base	Is the parent strong or weak?	$\begin{gathered} \text { Will this } \\ \text { ion } \\ \text { hydrolyze? } \end{gathered}$	If the ion will hydrolyze (react with water), write the ionization reaction. If not, write "no reaction" or NR.	pH of ion in solution (acidic, basic or neutral)
$\mathrm{NH}_{4}{ }^{1+}$	NH_{3}	weak	yes	$\mathrm{NH}_{4}{ }^{1+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$	acidic
$\mathrm{PO}_{3}{ }^{3-}$	$\mathrm{H}_{3} \mathrm{PO}_{3}$	weak	yes	$\mathrm{PO}_{3}{ }^{3-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{HPO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$	basic
Na^{1+}	NaOH	strong	no	NR	neutral
$\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}$	$\mathrm{N}_{2} \mathrm{H}_{4}$	weak	yes	$\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}{ }_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{N}_{2} \mathrm{H}_{4 \text { (aq) }}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$	acidic
$\mathrm{HCO}_{3}{ }^{\text {- }}$	$\mathrm{H}_{2} \mathrm{CO}_{3}$	weak	yes	$\mathrm{HCO}_{3}{ }^{1-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}+\mathrm{OH}^{-}{ }_{\text {(aq) }}$	basic
$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	strong	no	NR	neutral
Ca^{2+}	$\mathrm{Ca}(\mathrm{OH})_{2}$	strong	no	NR	neutral
$\mathrm{NO}_{3}{ }^{\text {- }}$	HNO_{3}	strong	no	NR	neutral

Notes and explanations:

- positive ions from weak bases are strong enough acids to hydrolyze. They will donate a proton to water and form the $\mathrm{H}_{3} \mathrm{O}^{+}$ion. Because this reaction forms the $\mathrm{H}_{3} \mathrm{O}^{+}$ion, it is a Ka reaction
- negative ions from weak acids are strong enough bases to hydrolyze. They will take a proton from water, leaving the OH - ion behind. Because this reaction forms the OH - ion, it is a Kb reaction

2. For each of the following salts:

- identify its parent acid and parent base and indicate if they are strong or weak
- for the ions which will react with water (hydrolyze) in solution, write the hydrolysis reaction
- state whether the salt solution is acidic, basic or neutral
a) sodium nitrate: $\mathrm{NaNO}_{3}(\mathrm{aq})$
- parent base is NaOH , a strong base \therefore no hydrolysis
- parent acid is HNO_{3}, a strong acid \therefore no hydrolysis
- salt solution will be neutral
b) ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
- parent base is NH_{3}, a weak base \therefore hydrolysis: $\mathrm{NH}_{4}{ }^{1+}{ }_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{NH}_{3 \text { (aq) }}+\mathrm{H}_{3} \mathrm{O}^{+}$(aq)
- parent acid is HCl , a strong acid \therefore no hydrolysis
- salt solution will be acidic
c) lithium oxalate $\left(\mathrm{Li}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$
- parent base is LiOH , a strong base \therefore no hydrolysis
- parent acid is $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, a weak acid \therefore hydrolysis: $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
- salt solution will be basic
d) silver bromide (AgBr)
- parent base is AgOH , a weak base \therefore hydrolysis: $\mathrm{Ag}^{1+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{AgOH}_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}$(aq)
- parent acid is HBr , a strong acid \therefore no hydrolysis
- salt solution will be acidic
e) magnesium fluoride $\left(\mathrm{MgF}_{2}\right)$
- parent base is $\mathrm{Mg}(\mathrm{OH})_{2}$, a strong base \therefore no hydrolysis
- parent acid is HF, a weak acid \therefore hydrolysis: $\mathrm{F}_{(\mathrm{aq})}^{1-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{HF}_{(\mathrm{aq})}+\mathrm{OH}^{-}$(aq)
- salt solution will be basic
f) potassium hydrogen carbonate $\left(\mathrm{KHCO}_{3}\right)$
- parent base is KOH , a strong base \therefore no hydrolysis
- parent acid is $\mathrm{H}_{2} \mathrm{CO}_{3}$, a weak acid \therefore hydrolysis: $\mathrm{HCO}_{3}{ }^{1-}{ }_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (aq) $+\mathrm{OH}^{-}$(aq)
- salt solution will be basic
g) barium hydrogen phosphate $\left(\mathrm{BaHPO}_{4}\right)$
- parent base is $\mathrm{Ba}(\mathrm{OH})_{2}$, a strong base \therefore no hydrolysis
- parent acid is $\mathrm{H}_{3} \mathrm{PO}_{3}$, a weak acid \therefore hydrolysis: $\mathrm{HPO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{1-}{ }_{(\text {aq })}+\mathrm{OH}^{-}{ }_{\text {(aq) }}$
- salt solution will be basic
h) strontium sulfate $\left(\mathrm{SrSO}_{4}\right)$
- parent base is $\mathrm{Sr}(\mathrm{OH})_{2}$, a strong base \therefore no hydrolysis
- parent acid is $\mathrm{H}_{2} \mathrm{SO}_{4}$, a strong acid \therefore no hydrolysis
- salt solution will be neutral
i) calcium oxide (CaO)
- this is a strong base (remember?) so the solution will be basic
j) $\quad\left(\mathrm{N}_{2} \mathrm{H}_{5}\right) \mathrm{ClO}_{4}$
- parent base is $\mathrm{N}_{2} \mathrm{H}_{4}$, a weak base \therefore hydrolysis: $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}{ }_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{N}_{2} \mathrm{H}_{4}\left(\mathrm{aq)}+\mathrm{H}_{3} \mathrm{O}^{+}\right.$(aq)
- parent acid is HClO_{4}, a strong acid \therefore no hydrolysis
- salt solution will be acidic

3. Calculate the $\mathbf{p H}$ of the following solutions:
a) 1.60 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$

- parent base is NH_{3}, a weak base \therefore hydrolysis: $\mathrm{NH}_{4}{ }^{1+}{ }_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{NH}_{3}$ (aq) $+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$
- parent acid is HCl , a strong acid \therefore no hydrolysis
- salt solution will be acidic

This reaction shows the formation of an acidic solution, so we need to use the Ka for $\mathrm{NH}_{4}{ }^{+} . \mathrm{NH}_{4}{ }^{+}$is the conjugate acid of NH_{3}, so calculate Ka as follows:

$$
\begin{aligned}
\mathrm{Ka} & =\mathrm{Kw} / \mathrm{Kb} \\
& =1.0 \times 10^{-14} / 1.8 \times 10^{-5} \\
& =5.56 \times 10^{-10}
\end{aligned}
$$

	$\mathrm{NH}_{4}{ }^{1+}{ }_{\text {aq) }}$	$\mathrm{NH}_{3}(\mathrm{aq})$	+	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {aq) }}$
I	1.60 M (assume complete dissociation)	0		0
C	- x	+ x		+ x
E	$1.60-\mathrm{x}$	x		x

$$
\mathrm{Ka}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]}
$$

Can we ignore the -x ?
$5.56 \times 10^{-10}=\frac{\mathrm{x}^{2}}{1.60}$
$\frac{1.60}{5.56 \times 10^{-10}}$ is much greater than 500 , so ignore -x
$\mathrm{x}=2.98 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at eq'm $=2.98 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=-\log \left[2.98 \times 10^{-5}\right]$
$=4.53(2$ decimals, because 2 sd$)$
(this makes sense- we had predicted an acidic solution)
b) 0.0155 M solution of NaHCO_{3}

- parent base is NaOH , a strong base \therefore no hydrolysis
- parent acid is $\mathrm{H}_{2} \mathrm{CO}_{3}$, a weak acid \therefore hydrolysis: $\mathrm{HCO}_{3}{ }^{1-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}$(aq)
- salt solution will be basic

This reaction shows the formation of a basic solution, so we need to use the Kb for $\mathrm{HCO}_{3}{ }^{-} . \mathrm{HCO}_{3}{ }^{1-}$ is the conjugate base of $\mathrm{H}_{2} \mathrm{CO}_{3}$, so calculate Kb as follows:

$$
\begin{aligned}
\mathrm{Kb} & =\mathrm{Kw} / \mathrm{Ka} \\
& =1.0 \times 10^{-14} / 4.5 \times 10^{-7} \\
& =2.2 \times 10^{-8}
\end{aligned}
$$

Use an ICE table to calculate the concentration of the OH - in the solution:

$2.2 \times 10^{-8}=\frac{\mathrm{x}^{2}}{0.0155}$
$\mathrm{x}=1.8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
so $[\mathrm{OH}-]$ at eq'm $=1.8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pOH}=-\log \left[1.8 \times 10^{-5}\right]$
$=4.73$ (2 decimals, because 2 sd)
$\mathrm{pH}=14-\mathrm{pOH}$
$=14-4.73$
$=9.27$ (this makes sense- we had predicted a basic solution)
c) 0.750 M solution of KNO_{2}

- parent base is KOH , a strong base \therefore no hydrolysis
- parent acid is HNO_{2}, a weak acid \therefore hydrolysis: $\mathrm{NO}_{2}{ }^{1-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}{ }_{\text {(aq) }}$
- salt solution will be basic

This reaction shows the formation of a basic solution, so we need to use the Kb for $\mathrm{NO}_{2}{ }^{-} . \mathrm{NO}_{2}{ }^{1-}$ is the conjugate base of HNO_{2}, so calculate Kb as follows:

$$
\begin{aligned}
\mathrm{Kb} & =\mathrm{Kw} / \mathrm{Ka} \\
& =1.0 \times 10^{-14} / 5.6 \times 10^{-4} \\
& =1.79 \times 10^{-11}
\end{aligned}
$$

Use an ICE table to calculate the concentration of the OH - in the solution:

$\mathrm{x}=3.664 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
so $[\mathrm{OH}-]$ at eq' $\mathrm{m}=3.664 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pOH}=-\log \left[3.664 \times 10^{-6}\right]$
$=5.44$ (2 decimals, because 2 sd)
$\mathrm{pH}=14-\mathrm{pOH}$
$=14-5.44$
$=8.56$ (this makes sense- we had predicted a basic solution)
d) 0.335 M solution of $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right) \mathrm{ClO}_{3}$

- parent base is $\mathrm{N}_{2} \mathrm{H}_{4}$, a weak base \therefore hydrolysis: $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}{ }_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \leftrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}$(aq)
- parent acid is HClO_{3}, a strong acid \therefore no hydrolysis
- salt solution will be acidic

This reaction shows the formation of an acidic solution, so we need to use the Ka for $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}$. $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}$ is the conjugate acid of $\mathrm{N}_{2} \mathrm{H}_{4}$, so calculate Ka as follows:

$$
\begin{aligned}
\mathrm{Ka} & =\mathrm{Kw} / \mathrm{Kb} \\
& =1.0 \times 10^{-14} / 1.3 \times 10^{-6} \\
& =7.69 \times 10^{-9}
\end{aligned}
$$

	$\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}{ }_{\text {(aq) }}$	\Longleftrightarrow	$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})$	+	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {aq) }}$
I	0.335 M (assume complete dissociation)		0		0
C	- x		+ x		+ x
E	$0.335-\mathrm{x}$		x		x

$$
\mathrm{Ka}=\frac{\left[\mathrm{N}_{2} \underline{\mathrm{H}}_{4}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}\right]}
$$

$$
\text { Can we ignore the }-\mathrm{x} \text { ? }
$$

$$
\frac{0.335}{7.69 \times 10^{-9}} \text { is much greater than } 500 \text {, so ignore -x }
$$

$$
7.69 \times 10^{-9}=\frac{x^{2}}{0.335}
$$

$\mathrm{x}=5.08 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at eq'm $=5.08 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=-\log \left[5.08 \times 10^{-5}\right]$
$=4.29$ (2 decimals, because 2 sd)
(this makes sense- we had predicted an acidic solution)

