Ion	Parent Acid or Base	Is the parent strong or weak?	Will this ion hydrolyze?	If the ion will hydrolyze (react with water), write the ionization reaction. If not, write "no reaction" or NR.	pH of ion in solution (acidic, basic or neutral)
$\mathrm{NH_4}^{\mathrm{1+}}$	NH ₃	weak	yes	$\mathrm{NH_4}^{\mathrm{l+}}_{\mathrm{(aq)}} + \mathrm{H_2O}_{\mathrm{(l)}} \leftrightarrow \mathrm{NH_3}_{\mathrm{(aq)}} + \mathrm{H_3O^+}_{\mathrm{(aq)}}$	acidic
PO3 ³⁻	H ₃ PO ₃	weak	yes	$PO_3^{3-}(aq) + H_2O_{(l)} \leftrightarrow HPO_3^{2-}(aq) + OH^{-}(aq)$	basic
Na ¹⁺	NaOH	strong	no	NR	neutral
$N_2 H_5^{1+}$	N ₂ H ₄	weak	yes	$N_2H_5^{1+}{}_{(aq)} + H_2O_{(l)} \leftrightarrow N_2H_4{}_{(aq)} + H_3O^+{}_{(aq)}$	acidic
HCO ₃ ¹⁻	H ₂ CO ₃	weak	yes	$\text{HCO}_{3}^{1-}_{(aq)} + \text{H}_{2}\text{O}_{(l)} \leftrightarrow \text{H}_{2}\text{CO}_{3(aq)} + \text{OH}^{-}_{(aq)}$	basic
SO4 ²⁻	H ₂ SO ₄	strong	no	NR	neutral
Ca ²⁺	Ca(OH) ₂	strong	no	NR	neutral
NO ₃ ¹⁻	HNO ₃	strong	no	NR	neutral

Unit 7, Lesson 08: The pH of Salt Solutions, Answers

1. Complete the following chart:

Notes and explanations:

- positive ions from weak bases are strong enough acids to hydrolyze. They will donate a proton to water and form the H_3O^+ ion. Because this reaction forms the H_3O^+ ion, it is a Ka reaction
- negative ions from weak acids are strong enough bases to hydrolyze. They will take a proton from water, leaving the OH- ion behind. Because this reaction forms the OH- ion, it is a Kb reaction
- 2. For each of the following salts:
- identify its parent acid and parent base and indicate if they are strong or weak
- for the ions which will react with water (hydrolyze) in solution, write the hydrolysis reaction
- state whether the salt solution is acidic, basic or neutral
- a) sodium nitrate: NaNO₃ (aq)
 - parent base is NaOH, a strong base ∴ no hydrolysis
 - parent acid is HNO₃, a strong acid : no hydrolysis
 - salt solution will be neutral
- b) ammonium chloride (NH₄Cl)
 - parent base is NH₃, a weak base \therefore hydrolysis: NH₄¹⁺_(aq) + H₂O_(l) \leftrightarrow NH₃_(aq) + H₃O⁺_(aq)
 - parent acid is HCl, a strong acid ∴ no hydrolysis
 - salt solution will be acidic
- c) lithium oxalate ($Li_2C_2O_4$)
 - parent base is LiOH, a strong base : no hydrolysis
 - parent acid is $H_2C_2O_4$, a weak acid : hydrolysis: $C_2O_4^{2^-}(aq) + H_2O_{(1)} \leftrightarrow HC_2O_4^{2^-}(aq) + OH^-_{(aq)}$
 - salt solution will be basic
- d) silver bromide(AgBr)
 - parent base is AgOH, a weak base : hydrolysis: $Ag^{1+}_{(aq)} + H_2O_{(l)} \leftrightarrow AgOH_{(aq)} + H_3O^+_{(aq)}$
 - parent acid is HBr, a strong acid : no hydrolysis
 - salt solution will be acidic

- e) magnesium fluoride (MgF₂)
 - parent base is Mg(OH)₂, a strong base ∴ no hydrolysis
 - parent acid is HF, a weak acid : hydrolysis: $F^{1-}_{(aq)} + H_2O_{(l)} \leftrightarrow HF_{(aq)} + OH^{-}_{(aq)}$
 - salt solution will be basic
- f) potassium hydrogen carbonate (KHCO₃)
 - parent base is KOH, a strong base : no hydrolysis
 - parent acid is H_2CO_3 , a weak acid : hydrolysis: $HCO_3^{1-}(aq) + H_2O_{(1)} \leftrightarrow H_2CO_3_{(aq)} + OH^{-}_{(aq)}$
 - salt solution will be basic
- g) barium hydrogen phosphate (BaHPO₄)
 - parent base is Ba(OH)₂, a strong base : no hydrolysis
 - parent acid is H_3PO_3 , a weak acid : hydrolysis: $HPO_4^{2^-}(aq) + H_2O_{(1)} \leftrightarrow H_2PO_4^{1^-}(aq) + OH^-_{(aq)}$
 - salt solution will be basic
- h) strontium sulfate (SrSO₄)
 - parent base is Sr(OH)₂, a strong base ∴ no hydrolysis
 - parent acid is H₂SO₄, a strong acid ∴ no hydrolysis
 - salt solution will be neutral
- i) calcium oxide (CaO)
 - this is a strong base (remember?) so the solution will be basic
- j) (N₂H₅)ClO₄
 - parent base is N_2H_4 , a weak base : hydrolysis: $N_2H_5^{1+}(aq) + H_2O_{(1)} \leftrightarrow N_2H_4(aq) + H_3O^+(aq)$
 - parent acid is HClO₄, a strong acid : no hydrolysis
 - salt solution will be acidic

3. Calculate the pH of the following solutions:

- a) 1.60 M solution of NH₄Cl
 - parent base is NH₃, a weak base \therefore hydrolysis: NH₄¹⁺_(aq) + H₂O_(l) \leftrightarrow NH₃(aq) + H₃O⁺_(aq)
 - parent acid is HCl, a strong acid : no hydrolysis
 - salt solution will be acidic

This reaction shows the formation of an acidic solution, so we need to use the Ka for NH_4^+ . NH_4^+ is the conjugate acid of NH_3 , so calculate Ka as follows:

Ka = Kw / Kb

 $= 1.0 \text{ x } 10^{-14} / 1.8 \text{ x } 10^{-5}$

$$= 5.56 \times 10^{-10}$$

	$\mathrm{NH_4}^{\mathrm{1+}}_{\mathrm{(aq)}}$	\Rightarrow NH _{3 (aq)} -	$H_{3}O^{+}_{(aq)}$
Ι	1.60 M (assume complete dissociation)	0	0
С	- x	+ x	+ x
Е	1.60 - x 🔨	Х	Х

\mathbf{V} (NIL) (IL O^+)	Can we ignore the $-x$?
$Ka = \underline{[NH_3] [H_3O]}$ $[NH_4^{1+}]$	1.60 is much greater than 500, so ignore -x
$5.56 \times 10^{-10} = x^2$	5.56×10^{-10}
1.60	
-	

$$x = 2.98 \times 10^{-5} \text{ mol/L}$$

so $[H_3O^+]$ at eq'm = 2.98 x 10⁻⁵ mol/L

 $pH = -\log \left[2.98 \times 10^{-5} \right]$

= 4.53 (2 decimals, because 2 sd)

(this makes sense- we had predicted an acidic solution)

- b) 0.0155 M solution of NaHCO₃
 - parent base is NaOH, a strong base : no hydrolysis
 - parent acid is H_2CO_3 , a weak acid : hydrolysis: $HCO_3^{-1}(aq) + H_2O_{(1)} \leftrightarrow H_2CO_3(aq) + OH^{-1}(aq)$
 - salt solution will be basic

This reaction shows the formation of a basic solution, so we need to use the Kb for HCO_3^- . HCO_3^{-1} is the conjugate base of H_2CO_3 , so calculate Kb as follows:

Kb = Kw / Ka= 1.0 x 10⁻¹⁴ / 4.5 x 10⁻⁷ = 2.2 x 10⁻⁸

Use an ICE table to calculate the concentration of the OH- in the solution:

	$HCO_3^{1-}(aq)$	\Rightarrow H ₂ CO _{3 (aq)} -	- OH ¹⁻ (aq)
Ι	0.0155 M (assume complete dissociation)	0	0
С	- x	+ x	+ x
Е	0.0155 - x 🔨	Х	Х
$Kb = [H_2CO_3] [OH^{1-}]$ $[HCO_3^{1-}]$ $2.2 \times 10^{-8} = \frac{x^2}{0.0155}$ $x = 1.8 \times 10^{-5} \text{ mol/L}$ so [OH-] at eq'm = 1.8 x 10^{-5} mol/L pOH = - log [1.8 x 10^{-5}]		XXCan we ignore the $-x$? 0.0155 2.2×10^{-8}	
= 4.73 (2 decimals, because 2 sd)			
pH = 14 - pOH			
= 14 - 4.73			

= 9.27 (this makes sense- we had predicted a basic solution)

c) 0.750 M solution of KNO₂

- parent base is KOH, a strong base : no hydrolysis
- parent acid is HNO₂, a weak acid : hydrolysis: $NO_2^{1-}(aq) + H_2O_{(1)} \leftrightarrow HNO_2(aq) + OH^{-}(aq)$
- salt solution will be basic

This reaction shows the formation of a basic solution, so we need to use the Kb for NO_2^{-1} . NO_2^{-1} is the conjugate base of HNO₂, so calculate Kb as follows:

Kb = Kw / Ka= 1.0 x 10⁻¹⁴ / 5.6 x 10⁻⁴ = 1.79 x 10⁻¹¹

Use an ICE table to calculate the concentration of the OH- in the solution:

	$NO_2^{1-}(aq)$	\Rightarrow HNO _{2 (aq)} -	H OH ¹⁻ (aq)
Ι	0.750 M (assume complete dissociation)	0	0
С	- x	+ x	+ x
Е	0.750 - x 🔨	Х	Х
$Kb = [HNO_2] [OH^{1-}]$ $[NO_2^{1-}]$		Can we ignore the $-x$?	

 $1.79 \ge 10^{-11} = \underline{x^2} \\ 0.750$

 $x = 3.664 \times 10^{-6} \text{ mol/L}$

so [OH-] at eq'm = $3.664 \times 10^{-6} \text{ mol/L}$

 $pOH = -\log [3.664 \times 10^{-6}]$

= 5.44 (2 decimals, because 2 sd)

pH = 14 - pOH

$$= 14 - 5.44$$

= 8.56 (this makes sense- we had predicted a basic solution)

- d) 0.335 M solution of (N₂H₅)ClO₃
 - parent base is N_2H_4 , a weak base \therefore hydrolysis: $N_2H_5^{1+}_{(aq)} + H_2O_{(l)} \leftrightarrow N_2H_4_{(aq)} + H_3O^+_{(aq)}$
 - parent acid is HClO₃, a strong acid : no hydrolysis
 - salt solution will be acidic

This reaction shows the formation of an acidic solution, so we need to use the Ka for $N_2H_5^{1+}$. $N_2H_5^{1+}$ is the conjugate acid of N_2H_4 , so calculate Ka as follows:

Ka = Kw / Kb= 1.0 x 10⁻¹⁴ / 1.3 x 10⁻⁶ = 7.69 x 10⁻⁹

	$N_2H_5^{1+}_{(aq)}$	\implies N ₂ H _{4 (aq)} -	$+$ $H_3O^+_{(aq)}$
Ι	0.335 M (assume complete dissociation)	0	0
С	- x	+ x	+ x
Е	0.335 - x 🔨	X	Х

	•	
$Ka = [N_2H_4] [H_3O^+]$	Can we igr	hore the $-x$?
$[N_2H_5^{1+}]$	0.335	is much greater than 500, so ignore -x
$7.69 \ge 10^{-9} = \underline{x^2}$	7.09 X 10	
0.335		
$x = 5.08 \times 10^{-5} \text{ mol/L}$		

so $[H_3O^+]$ at eq'm = 5.08 x 10⁻⁵ mol/L

 $pH = -\log[5.08 \times 10^{-5}]$

= 4.29 (2 decimals, because 2 sd)

(this makes sense- we had predicted an acidic solution)