Unit 7, Lesson 10: Answers to Titration Calculations

1. Define: titration, primary standard, standardization, equivalence point, endpoint, pipette and burette.
2. The following acid solutions were titrated with $0.150 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide. Write the neutralization equation for each reaction and calculate the concentrations of the acid solutions.
a) 25.00 mL of HCl requiring 16.50 mL of base solution

$$
\begin{aligned}
\mathrm{n}_{\text {base }} & =\mathrm{C} x \mathrm{~V} \\
& =0.150 \mathrm{~mol} / \mathrm{L} \times 0.01650 \mathrm{~L} \\
& =0.002475 \mathrm{~mol} \mathrm{NaOH} \\
& =\text { moles of acid at equivalence point } \\
\mathrm{C}_{\text {acid }} & =\mathrm{n} / \mathrm{V} \\
& =0.002475 \mathrm{~mol} / 0.02500 \mathrm{~L} \\
& =0.0990 \mathrm{~mol} / \mathrm{L}(3 \operatorname{sig} \operatorname{digs})
\end{aligned}
$$

b) 25.00 mL of sulfuric acid solution requiring 42.00 mL of base solution

Because sulfuric acid is a diprotic acid, and both protons will be titrated, we must take into account the mole ratios (stoichiometry) of the reaction.

Reaction: $\quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
$\mathrm{n}_{\text {base }}=\mathrm{CxV}$
$=0.150 \mathrm{~mol} / \mathrm{L} \times 0.04200 \mathrm{~L}$
$=0.00630 \mathrm{~mol} \mathrm{NaOH}$
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needs 2 moles NaOH
so, moles of acid $=1 / 2 \times$ moles NaOH

$$
=0.00315 \text { moles } \mathrm{H}_{2} \mathrm{SO}_{4}
$$

$\mathrm{C}_{\text {acid }}=\mathrm{n} / \mathrm{V}$
$=0.00315 \mathrm{~mol} / 0.02500 \mathrm{~L}$
$=0.126 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig}$ digs $)$

Because one mole of acid requires 2 moles or of base, adjust the equation:

$$
C_{a} V_{a}=1 / 2 C_{b} V_{b}
$$

$$
\mathrm{C}_{\mathrm{a}}=\frac{1 / 2 \mathrm{C}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}
$$

$$
=\frac{1 / 2 \times 0.150 \mathrm{~mol} / \mathrm{L} \times 0.04200 \mathrm{~L}}{0.02500 \mathrm{~L}}
$$

$$
=0.0126 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \mathrm{digs})
$$

c) 10.00 mL of vinegar, containing acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ requiring 55.0 mL of base solution
$\mathrm{n}_{\text {base }}=\mathrm{CxV}$
$=0.150 \mathrm{~mol} / \mathrm{L} \times 0.0550 \mathrm{~L}$
$=0.00825 \mathrm{~mol} \mathrm{NaOH}$
$=$ moles of acid at equivalence point
$\mathrm{C}_{\text {acid }}=\mathrm{n} / \mathrm{V}$
$=0.00825 \mathrm{~mol} / 0.01000 \mathrm{~L}$

$$
\mathrm{C}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\mathrm{C}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}
$$

or $\quad C_{a}=\underline{C}_{\underline{b}} \underline{V_{a}} \underline{b}$
$=\underline{0.150 \mathrm{~mol} / \mathrm{L} \times 0.0550 \mathrm{~L}}$ 0.01000 L
$=0.825 \mathrm{~mol} / \mathrm{L}$ (3 sig digs)

$$
=0.825 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \mathrm{digs})
$$

3. What volume of 0.350 M ammonium hydroxide will be required to titrate 50.0 mL of 0.275 M HCl ? The reaction is:

$$
\begin{array}{rlrl}
& \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & +\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \\
\mathrm{n}_{\text {acid }} & =\mathrm{C} \mathrm{x} \mathrm{~V} & & \mathrm{C}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\mathrm{C}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}} \\
& =0.275 \mathrm{~mol} / \mathrm{L} \times 0.0500 \mathrm{~L} & \text { or } & \mathrm{C}_{\mathrm{b}}=\underline{\mathrm{C}}_{\mathrm{a}} \underline{\mathrm{~V}}_{\mathrm{a}} \\
& =0.01375 \mathrm{~mol} \mathrm{NaOH} & & =\underline{0.275 \mathrm{~mol} / \mathrm{L} \times 0.0500 \mathrm{~L}} \\
& =\text { moles of base at equivalence point } & & 0.350 \mathrm{~L} \\
\mathrm{~V}_{\text {base }} & =\mathrm{n} / \mathrm{C} & & =0.0393 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \mathrm{digs} \\
& =0.01375 \mathrm{~mol} / 0.350 \mathrm{~L} & & \text { or } 39.3 \mathrm{~mL} \text { of acid } \\
& =0.0393 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \text { digs }) & & \\
& \text { or } 39.3 \mathrm{~mL} \text { of acid } & &
\end{array}
$$

4. A solution of HNO_{3} of unknown concentration was titrated with 0.948 M KOH .21 .32 mL of the base was required to neutralize a 10.0 mL sample of acid. Find the concentration of the acid. The reaction is:

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KNO}_{3}(\mathrm{aq})
$$

$$
\begin{aligned}
\mathrm{n}_{\text {base }} & =\mathrm{C} x \mathrm{~V} \\
& =0.948 \mathrm{~mol} / \mathrm{L} \times 0.02132 \mathrm{~L} \\
& =0.020211 \mathrm{~mol} \mathrm{NaOH} \\
& =\text { moles of acid at equivalence point } \\
\mathrm{C}_{\text {acid }} & =\mathrm{n} / \mathrm{V} \\
& =0.020211 \mathrm{~mol} / 0.01000 \mathrm{~L} \\
& =2.02 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \text { digs })
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\mathrm{C}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}
$$

or

$$
\begin{aligned}
\mathrm{C}_{\mathrm{a}} & =\underline{\mathrm{C}_{b}} \underline{\mathrm{~V}_{\mathrm{b}}} \underline{\underline{a}} \\
& =\frac{0.948 \mathrm{~mol} / \mathrm{L} \times 0.02132 \mathrm{~L}}{0.01000 \mathrm{~L}} \\
& =2.02 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \mathrm{digs})
\end{aligned}
$$

5. 25.8 mL of 0.328 M sodium hydroxide solution are required to titrate 50.0 mL of sulfuric acid. Calculate the concentration of the acid. The reaction is:
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

$$
\begin{aligned}
\mathrm{n}_{\text {base }} & =\mathrm{C} x \mathrm{~V} \\
& =0.328 \mathrm{~mol} / \mathrm{L} \times 0.025 \\
& =0.008462 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

$$
=0.328 \mathrm{~mol} / \mathrm{L} \times 0.0258 \mathrm{~L} \quad \text { or }
$$

1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needs 2 moles NaOH
so, moles of acid $=1 / 2 \times$ moles NaOH

$$
=0.004231 \text { moles } \mathrm{H}_{2} \mathrm{SO}_{4}
$$

$$
\mathrm{C}_{\text {acid }}=\mathrm{n} / \mathrm{V}
$$

$$
=0.004231 \mathrm{~mol} / 0.05000 \mathrm{~L}
$$

$$
=0.0846 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \mathrm{digs})
$$

Because one mole of acid requires 2 moles of base, adjust the equation:

$$
\mathrm{C}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=1 / 2 \mathrm{C}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}
$$

$$
\mathrm{C}_{\mathrm{a}}=\frac{1 / 2 \mathrm{C}_{\mathrm{b}} \underline{\mathrm{~V}}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}
$$

$$
=\frac{1 / 2 \times 0.328 \mathrm{~mol} / \mathrm{L} \times 0.0258 \mathrm{~L}}{0.05000 \mathrm{~L}}
$$

$$
=0.0846 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \mathrm{digs})
$$

6. 50.0 g of solid NaOH are dissolved in 2.00 L of water. In a titration, a 25.0 mL sample of this solution exactly neutralizes 32.6 mL of hydrochloric acid. What is the concentration of the acid? The reaction is:

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

First, we have to calculate the concentration of the sodium hydroxide solution:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{NaOH}}= & \text { mass } / \mathrm{MM}_{\mathrm{NaOH}} \\
& =\frac{50.0 \mathrm{~g}}{40.00 \mathrm{~g} / \mathrm{mol}} \\
& =1.25 \mathrm{~mol} \mathrm{NaOH}
\end{aligned} \quad \begin{aligned}
\mathrm{C}_{\mathrm{NaOH}} & =\mathrm{n} / \mathrm{V} \\
& =\frac{1.25 \mathrm{~mol}}{2.00 \mathrm{~L}} \\
& =0.625 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Then, use the calculated concentration of the NaOH solution to do the titration calculation:

$$
\begin{aligned}
\mathrm{n}_{\text {base }} & =\mathrm{C} \times \mathrm{V} \\
& =0.625 \mathrm{~mol} / \mathrm{L} \times 0.0250 \mathrm{~L} \\
& =0.015625 \mathrm{~mol} \mathrm{NaOH} \\
& =\text { moles of acid at equivalence point } \\
\mathrm{C}_{\text {acid }} & =\mathrm{n} / \mathrm{V} \\
& =0.015625 \mathrm{~mol} / 0.0326 \mathrm{~L} \\
& =0.479 \mathrm{~mol} / \mathrm{L}(3 \mathrm{sig} \text { digs })
\end{aligned}
$$

7. A sample of powdered vitamin C (ascorbic acid, $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$) is dissolved in water and titrated with a 0.150 M solution of sodium hydroxide. A total of 21.50 mL of base solution was required to change the colour of the indicator. How many grams of ascorbic acid did the tablet contain, assuming the presence of one acidic hydrogen atom per molecule? The reaction can be written:

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}(\mathrm{aq})
$$

$\mathrm{n}_{\text {base }}=\mathrm{CxV}$
$=0.150 \mathrm{~mol} / \mathrm{L} \times 0.02150 \mathrm{~L}$
$=0.003225 \mathrm{~mol} \mathrm{NaOH}$
$=$ moles of acid at equivalence point
mass $_{\text {acid }}=\mathrm{nx} \mathrm{MM}$
$=0.003225 \mathrm{~mol} \mathrm{x} 176.14 \mathrm{~g} / \mathrm{mol}$
$=0.568 \mathrm{~g}$ of ascorbic acid (3 sig digs)
or 568 mg of ascorbic acid
8. The compound acetylsalicylic acid (ASA), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, is found in many pain relievers, such as Aspirin. An ASA product was analyzed by dissolving a tablet weighing 0.250 g in water and titrating with 0.030 M KOH . The titration required 29.40 mL of base. What was the percentage by weight of acetylsalicylic acid in the tablet?

$$
\begin{aligned}
& \quad \mathrm{KOH}(\mathrm{aq})+\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}(\mathrm{aq}) \\
& \mathrm{n}_{\text {base }}= \\
& =\mathrm{C} \times \mathrm{V} \\
& =0.030 \mathrm{~mol} / \mathrm{L} \times 0.02940 \mathrm{~L} \\
& = \\
& =0.000882 \mathrm{~mol} \mathrm{KOH} \\
& =\text { moles of acid at equivalence point } \\
& \text { mass }_{\text {acid }}=\mathrm{n} \times \mathrm{MM} \\
& =0.000882 \mathrm{~mol} \times 180.17 \mathrm{~g} / \mathrm{mol} \\
& =0.159 \mathrm{~g} \text { of ASA }(3 \text { sig digs })
\end{aligned}
$$

Most medicines contain the active ingredient (such as ASA) along with other ingredients to stabilize and bind the drug into a tablet. To calculate the percentage by weight of the medicine in the tablet, divide the mass of the drug by the mass of the whole tablet and multiply by 100 :

$$
\begin{aligned}
\% \text { by mass ASA } & =\frac{\text { mass of ASA }}{\text { mass of tablet }} \times 100 \\
& =\frac{0.159 \mathrm{~g}}{0.250 \mathrm{~g}} \times 100 \\
& =63.6 \% \text { of the tablet is ASA }
\end{aligned}
$$

9. Maleic acid is a solid, diprotic acid with the chemical formula $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}$. It was used to standardize a sodium hydroxide solution. It required 32.1 mL of the base to titrate 0.187 g of maleic acid. What is the concentration of the base?
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{O}_{4}(\mathrm{aq})$
$\mathrm{n}_{\text {acid }}=$ mass $/ \mathrm{MM}_{\text {acid }}$

$$
=\frac{0.187 \mathrm{~g}}{114.06 \mathrm{~g} / \mathrm{mol}}
$$

$=0.001639 \mathrm{~mol}$ maleic acid

Maleic acid is a diprotic acid, so one mole of acid can neutralize 2 moles of base.
So, the moles of base $=2 \mathrm{x}$ the moles of acid

$$
\begin{aligned}
& =2 \times 0.001639 \mathrm{~mol} \\
& =0.003279 \mathrm{~mol} \text { of } \mathrm{NaOH}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{NaOH}} & =\mathrm{n} / \mathrm{V} \\
& =\frac{0.003279 \mathrm{~mol}}{0.0321 \mathrm{~L}} \\
& =0.102 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH} \text { solution }
\end{aligned}
$$

