Review for Unit Test 7: Acids, Bases and Salts (Chapter 8)

Objectives:

- 1. Write definitions for, or explain the meaning of: Bronsted-Lowry acid and base, neutral, strong acid, strong base, weak acid, weak base, concentrated, dilute, ionization, dissociation, hydrolysis, pH, K_w, K_a and K_b.
- 2. Understand what is meant by the terms: salt, hydrolyze, percent dissociation, conjugate acid-base pair, parent acid, parent base, amphiprotic (amphoteric), monoprotic and polyprotic.
- 3. Does the H+ ion exist in aqueous solution? Explain why or why not.
- 4. Know the general chemical and physical properties of acids and bases.
- 5. Be able to recognize acids, bases and salts from their chemical formulas.
- 6. Be able to name common acids and bases, using an ion chart.
- 7. Be able to recognize strong acids and bases, from their names or chemical formulas.
- 8. Identify or describe chemical and physical properties that could be used to distinguish between:
- a) acids, bases and salts
- b) strong and weak acids
- c) strong and weak bases
- 9. Be able to predict the products of the following types of reactions:
- a) acids and metals
- b) acids and carbonates
- c) acids and bases
- d) Group I and II metal oxides in water
- 10. Be able to identify conjugate acid/base pairs.
- 11. Be able to write the ionization reactions of weak acids and bases, and their conjugate partners, in water.
- 12. Be able to write and use the K_a and K_b expressions of weak acids and bases. What factor(s) affect the value of K_a and K_b ?
- 13. Be able to predict whether a salt will dissolve in water to form an acidic, basic or neutral solution. Write any ionization (hydrolysis) reactions that may take place.
- 14. Know, and be able to apply, the relationships between the following:
- a) pH and pOH
- b) $[H_3O^+]$ and $[OH^-]$
- c) K_a , K_b and K_w
- 15. Be able to calculate the pH of solutions of:
- a) strong acids
- b) strong bases
- c) weak acids and acid salts
- d) weak bases and basic salts
- 16. Be able to calculate K_a or K_b given:
- a) the initial concentration of an acid or base and the pH of the final solution
- b) the K_a or K_b for its conjugate partner
- 17. Be able to calculate percent dissociation (ionization) for weak acids and bases.

Sample Questions: Review for Acids, Bases and Salts

1. Acids are proton ______. Complete the following chart for these **acids**:

Acid	Ionization Reaction in Water	Conjugate Base	Ka	Kb
H_2SO_3				
HCHO ₂				
HPO4 ²⁻				
H ₂ O				
NH4 ¹⁺				
HCO ₃ ¹⁻				
H_2SO_4				
$C_5H_5NH^+$				

2. Bases are proton ______. Complete the following chart for these **bases**:

Base	Ionization Reaction	Conjugate Acid	Ka	Kb
ClO-				
N2H4 (aq)				
CH ₃ COO ⁻				
HPO ₄ ²⁻				
F ¹⁻				
H ₂ O				
NH ₂ OH				
NH ₃				
C ₅ H ₅ N				
HCO ₃ ¹⁻				

3. For nitrogen compounds, how can you recognize when they will behave as bases? As acids?

4. As a general rule for weak acids and bases, negative ions in solution will behave as _____.

- 5. Using your knowledge of trends for acid strengths, arrange the following acids in order from highest to lowest strength: HCl H₃PO₄ HI H₃PO₃
- 6. Using Ka values, arrange the following acids in order from highest to lowest strength:

	HNO ₂	H_3PO_4	HF	HCH ₃ COO	H_2S	H_2SO_3	H_2CO_3	
7.	Which of the	acids in Q6 h	as the stro	ongest conjugate ba	se?			
8.	Calculate the pH of the following solutions:							
a)	15.4 g of pota	issium hydrox	tide in a to	otal volume of 600.	0 mL solutio	n (13.660), 3 decimal places)	
b)	125 mL of 15	.0 M of nitric	acid dilu	ted to 1.00 litre of s	olution	(-0.273	, 3 decimal places)	
c)	a 0.0125 M so	olution of mag	gnesium h	ydroxide		(12.398	8, 3 decimal places)	
d)	a 1.35 M solu	tion of acetic	acid			(2.31, 2 decin	nal places from K _a)	
e)	a 2.00 M solu	tion of pyridi	ne (C_5H_5)	N)		(9.77, 2 decin	nal places from K _b)	
f)	0.555 M solut	tion of hypob	romite ior	n (from sodium hyp	obromite)	(11.15, 2	decimals from K _a)	
g)	100.0 mL of 1	18.0 M H ₂ SO	diluted to	o 500.0 mL of solut	ion	(-0.556	, 3 decimal places)	

9. Complete the following chart. Include the correct number of sig digs in your answers:

рН	рОН	[H ₃ O+]	[OH-]	acid/base/neutral
1.25				
		4.63 x 10 ⁻¹⁰		
	9.10			
			0.750	
	5.00			

10. The following reaction strongly favours the reactants:

 $HCO_3^{1-}(aq) + HSO_4^{1-}(aq) \leftrightarrow CO_3^{2-}(aq) + H_2SO_4(aq)$

a) the strongest acid in this system is: b) the strongest base in this system is: _____

c) Will this reaction have a large or small value of K_{eq} ? ____ Explain.

11. The pH of a 0.16 M solution of phenolic acid is 3.20.

a) What is the Ka for phenolic acid?

b) What is the percent dissociation of the acid in this solution?

- 12. Name the following substances and then predict whether their solutions will be acidic, basic or neutral:
- a) NaCH₃COO b) NH₄Cl c) Li₂O d) Sr(NO₃)₂_____ e) HBrO (HOBr) f) CoBr₂ g) $Cr(NO_3)_2$ h) Na_3PO_4 i) HSCN_____ j) CaC₂O₄_____ k) Mg(ClO₃)₂_____ 1) K₃BO₃_____ m) SnCl₄ 13. What are two tests or properties you could distinguish between the following solutions? a) NaCl and NaClO
- b) H₂O and Li₂O

c) HClO₂ and HClO₃

d) H₂S and Na₂S

- e) $Ca(OH)_2$ and $Co(OH)_2$
- 14. Write the products of the following reactions (if any) and then balance each reaction:
- a) Mg (s) + CH₃COOH (aq) \rightarrow
- b) NaOH (aq) + Ba (s) \rightarrow
- c) HBrO₃ (aq) + K₂CO₃ (s) \rightarrow
- d) $K_2O(s) + H_2O(l) \rightarrow$

(only 0.39% dissociated)

 $(K_a = 2.5 \times 10^{-6})$

Long Calculation Questions: Be prepared to write out full solutions to questions such as:

- 1. The pH of a 0.10 M solution of periodic acid, HIO₄, is 1.42. Calculate the K_a for periodic acid. (Ka = 0.023)
- 2. Butanoic acid, C_3H_7COOH , is found in small quantities in human perspiration and is responsible for the foul odour often associated with locker rooms. A 0.0010 mol/L solution of butanoic acid has a pH of 3.91 at 25°C. Calculate the acid dissociation constant (K_a) of butanoic acid. (Ka = 1.7 x 10⁻⁵)
- 3. What is the percent ionization of a 0.18 M solution of cyanic acid, HOCN? (4.4%)
- 4. What is the percent ionization of 0.20 M CH_3NH_2 (aq) if the pH of the solution is 11.90? (4.0%)
- 5. Calculate the pH of a 0.040 M solution of CsBrO (aq). (pH = 10.58)
- 6. Calculate the pH of a 1.00 M solution of N_2H_5Cl (aq). (pH = 4.06)

Practice Multiple Choice Questions: Acids, Bases and Salts

- 1. Which of the following is typical of bases? a) conduct electric current in solution c) concentration of $H_3O^+ >$ concentration of OH^-
- b) taste sour d) turns litmus red
- 2. Which of the following is/are properties of strong acids?
 - I) they react with carbonates to produce hydrogen gas
 - II) they have very high pH
 - III) they are good electrolytes
 - IV) they turn phenolphthalein pink
- a) I, II and III only c) III only
- b) I and IV only d) II and III only
- 3. A student tests a solution. It is colourless with phenolphthalein, green with bromothymol blue and a good electrolyte. This solution is probably:
- a) hydrofluoric acid c) potassium sulfate
- b) calcium hydroxide d) ammonium nitrate
- 4. Which of the following substances will have the highest percent dissociation (ionization)?
- a) H_2S b) H_2SO_4 c) H_2SO_3 d) H_3PO_4
- 5. Which of the following substances will ionize in water?
 - I) CH₃COOH
 - II) $Mg(OH)_2$
 - III) NH₃
 - IV) Fe(OH)₃
- a) I only

- c) II and IV only
- b) I and III only d) I, II, III and IV
- 6. Which of the following aqueous solutions will have the highest pH?
- a) MgSO₄ (aq) c) $Na_2C_2O_4$ (aq)
- b) $(NH_4)_2SO_4(aq)$ d) $HClO_2(aq)$

7.	Which of the following substances wouldI)NaHCO3II)K3PO4III)LiHC2O4IV)NH4SCN	d be	e classified as salts?			
a) b)	I, II, III and IV I, II and III	c) d)	II and IV only II only			
8.	Which of the following is/are polyprotic,I)HNO3II)HClO4III)H2SO4IV)H3PO4	, str	rong acids?			
a) b)	I, II, III and IV II and III only	c) d)	III and IV only III only			
9.	Which of the following will have the low	vest	electrical conductivity?			
a)	1.00 M H ₂ SO ₄ (aq)	c)	1.00 M HNO ₃ (aq)			
b)	1.00 M H ₃ PO ₄ (aq)	d)	1.00 M HCl (aq)			
10. a)	The conjugate base of $H_2PO_4^-$ is HPO_4^{-2} b) HPO_4^{-3}	c)	H ₃ PO ₄	d) OH-		
11. a)	The value of K_b for $H_2PO_4^-$ is 1.4 x 10 ⁻¹² b) 6.2 x 10 ⁻⁸	c)	1.6 x 10 ⁻⁷	d) 7.5 x 10 ⁻³		
12. a)	What is the pH of a 0.10 M Sr(OH) ₂ solu 0.20 b) 0.70	ution c)	n? 13.30	d) 13.00		
13.	Which of the species below is/are present I) H_2SO_4 (aq) II) HSO_4^{1-} (aq) III) SO_4^{2-} (aq)	nt in	a reagent bottle labelled 1	.0M H ₂ SO ₄ ?		
a)	I only	c)	II and III only			
b)	I and II only	d)	I, II and III			
14	A 0.20 M solution of hydrohumic sold i		at described as			
14. a)	strong and dilute	$\frac{15}{c}$	strong and concentrated			
b)	weak and concentrated	d)	weak and dilute			
15	Which of the following statements is/are	. t m	a about noutralization ran	ations?		
a)	the products of all neutralization reactions are neutral					
b)	when strong acids are neutralized with st	tron	g bases, the reaction goes	to completion		
c) d)	when strong acids are neutralized with w all of the above	veak	t bases, the reaction does n	ot go to completion		
16.	Which of the following is the relationshi	p bo	etween $[H_3O^+]$ and $[OH^-]$ i	n any aqueous solution?		
a)	$[H_3O^+] + [OH^-] = 1.0 \times 10^{-14}$	c)	$[H_3O^+][OH^-] = 1.0 \times 10^-$	-14		
b)	$[H_3O^{-}] + [OH^{-}] = 14$	d)	$[H_3O^{-}][OH^{-}] = 14$			

17.	 Which of the following tests could be used to distinguish between HI (aq) and HIO₃ (aq)? I) the rate of reaction with magnesium metal II) pH III) the reaction with blue litmus paper IV) the reaction with phenolphthalein 					
a) b)	I and II only III and IV only	c) I, II, III and IVd) none of these tests will distinguish these substances				
18.	What are the two Bronsted-Lowry bases	in this equilibrium?				
	$HSO_{3}^{-1}(aq) + H_{2}PO_{4}^{-}(aq)$	$\leftrightarrow SO_{3}^{-2} (aq) + H_{3}PO_{4} (aq)$				
a) b)	$HSO_3^{-1}(aq)$ and $H_2PO_4^{-}(aq)$ $H_2PO_4^{-}(aq)$ and $H_3PO_4(aq)$	c) SO_3^{-2} (aq) and HSO_3^{-1} (aq) d) $H_2PO_4^{-1}$ (aq) and SO_3^{-2} (aq)				
19. a) b)	What is the pH of a solution of NiCl ₃ and solution is basic because of Ni^{3+} (aq) solution is basic because of Cl^{1-} (aq)	 d what ion determines this? c) solution is acidic because of Ni³⁺ (aq) d) solution is acidic because of Cl¹⁻ (aq) 				
20. a) b)	Which of the following solutions has a p NH ₄ NO ₃ (aq) NaCl (aq)	H less than 7.00? c) LiOH (aq) d) KCH ₃ COO (aq)				
21. a) b)	Which of the following ions will hydroly NO_3^{1-} (aq) I^{1-} (aq)	yze? c) $F^{1-}(aq)$ d) $ClO_3^{-1-}(aq)$				
22. a) b) c) d)	The amphiprotic ions are:I.I and II onlyII.II and III onlyII.I, II and IIIIII.	HCO_{3}^{-} $H_{2}PO_{4}^{-}$ $CH_{3}COO^{-}$				
23. a) b)	What is the pH of a solution of $(NH_4)_2SG$ solution is basic because of NH_4^{1+} (aq) solution is basic because of SO_4^{2-} (aq)	 D₄ and what ion determines this? c) solution is acidic because of NH₄¹⁺ (aq) d) solution is acidic because of SO₄²⁻ (aq) 				
24.	Which of the following solutions will ha	we the lowest electrical conductivity?				
a)	0.1M NaHSO ₃ (aq)	c) 0.1M NaF (aq)				
b)	$0.1 \text{M H}_2 \text{SO}_3 (\text{aq})$	d) 0.1M HF (aq)				
25.	The conjugate acid of $HAsO_4^{2-}$ is:					
a)	H_2AsO_4 aq)	c) $H_3AsO_4(aq)$				
b)	AsO_4 (aq)	d) $H_3O'(aq)$				
26.	Which of the following 1.0M solutions	would have a pH greater than 7.00?				
a) b)	NaCH ₃ COO (aq) HCN (aq)	c) $NH_4Cl(aq)$ d) $KNO_2(aq)$				
<i>o</i> ,		u,				
27.	The relationship shown to the far right i $K_{\rm b}$ for H ₂ P ₂ O ₂ (aq)	s the $[H_2P_2O_7^{2-}][H_3O^+]$				
b)	K_a for $H_3P_2O_7^-$ (aq)	d) K_b for $H_2P_2O_7^-$ (aq) $[H_3P_2O_7^-]$				

28. The value of K_b for HPO₄²⁻ is a) 2.1 x 10⁻² b) 6.2 x 10⁻⁸ c) 2.2 x 10⁻¹³ d) 1.6 x 10⁻⁷

29. Which of the following graphs describes the relationship between pH and pOH?

- 30. The value of K_b for hydrogen oxalate (HC₂O₄) is: a) 6.7 x 10⁻¹¹ c) 1.8 x 10⁻¹³
- b) 5.6×10^{-2} c) 1.8×10^{-4} d) 1.5×10^{-4}
- 31. The K_b expression for HSe⁻ is

a)

$$K_{b} = \frac{\left[H_{2}Se\right]\left[OH^{-}\right]}{\left[HSe^{-}\right]}$$
b)

$$K_{b} = \frac{\left[HSe^{-}\right]\left[H_{3}O^{+}\right]}{\left[H_{2}Se\right]}$$
c)

$$K_{b} = \frac{\left[HSe^{-}\right]\left[OH^{-}\right]}{\left[Se^{2-}\right]}$$
d)

$$K_{b} = \frac{\left[Se^{2-}\right]\left[H_{3}O^{+}\right]}{\left[HSe^{-}\right]}$$

32. The K_b expression for the reaction of $HC_2O_4^-$ with water is:

a)

$$K_{b} = \frac{\left[HC_{2}O_{4}^{-}\right]}{\left[C_{2}O_{4}^{2-}\right]\left[OH^{-}\right]}$$

$$K_{a} = \frac{\left[C_{2}O_{4}^{2-}\right]\left[H_{3}O^{+}\right]}{\left[HC_{2}O_{4}^{-}\right]}$$

$$K_{a} = \frac{\left[HC_{2}O_{4}^{-}\right]\left[H_{3}O^{+}\right]}{\left[C_{2}O_{4}^{2-}\right]}$$

$$K_{b} = \frac{\left[H_{2}C_{2}O_{4}\right]\left[OH^{-}\right]}{\left[HC_{2}O_{4}^{-}\right]}$$

- 33. Which species is/ are amphiprotic?
- a) I and II only
- b) II and III only
- c) I and III only
- d) I, II and III

I.	H ₂ O
II.	$\mathrm{NH_4^+}$
III.	HCO3-

34. Which of the following represents the ionization of water?

a)	$H_2O \rightleftharpoons \frac{1}{2}O_2 + 2H^+ + 2e^-$	C)	$2H_2O \rightleftharpoons H_3O^+ + OH^-$
b)	$\rm 2H_2O + O_2 ~~ \rightleftarrows ~~ 2H_2O_2$	d)	$\mathrm{H_2O} \ \ \mathrm{H_2} + \tfrac{1}{2}\mathrm{O_2}$

35. The relationship shown is the expression for:

a) K_b for H_3BO_3

b) K_b for $H_2BO_3^-$

c) K_a for H_3BO_3

d) K_a for H_2BO_3

36. Which of the following represents the reaction between MgO and
$$H_2O_2^2$$

a) $MgO + H_2O \rightarrow Mg(OH)_2$ c) $MgO + H_2O \rightarrow Mg + H_2O_2$

b) $2MgO + H_2O \rightarrow 2MgOH + \frac{1}{2}O_2$ d) $MgO + H_2O \rightarrow MgH_2 + O_2$

 $\frac{H_3BO_3}{[H_2BO_3^-]}$

37. a)	The salt produced neutral	by the reaction of HSC b) acidic	CN (aq) and Mg(OH) ₂ c) basic	(s) will be:d) no such reaction will occur
38.	Arrange the follow	wing 0.10 M solutions	in order from highest t	o lowest pH:
	HBr (aq)	HBrO (aq)	HBrO ₂ (aq)	HBrO ₃ (aq)
a) b)	$\begin{array}{ll} HBr (aq) > HE \\ HBrO (aq) > HE \end{array}$	$BrO(aq) > HBrO_2(a)$ $BrO_2(aq) > HBrO_3(a)$	$aq) > HBrO_3 (aq)$ aq) > HBr (aq)	
c) d)	HBr (aq) > HE HBrO3 (aq) > HE	$\operatorname{BrO}_3(\operatorname{aq}) > \operatorname{HBrO}_2(\operatorname{aq})$ $\operatorname{BrO}_2(\operatorname{aq}) > \operatorname{HBrO}(\operatorname{a})$	aq) > HBrO (aq) q) > HBr (aq)	
39. a)	Calculate the [OF 0.0010 M	H^{-1} of a solution if the p b) 1.0 x 10 ⁻¹¹ M	pH = 11.00: c) 11 M	d) - 1.0×10^{11}
		a 1 		
40. a)	Calculate the pH c 0.44	b) 0.36	ns 0.22 mol/L Ba(OH) c) 13.64	d) 13.34
41.	Sodium benzoate	(NaC ₆ H ₅ COO) is the s	alt of benzoic acid, C_6	H_5COOH . It is commonly used as a
a)	acidic	b) basic	c) neutral	d) insoluble in water
42.	What is the percen	nt ionization of a 0.95 N	A solution of HF at 25°	°C?
a)	95%	b) 0.063%	c) 2.6%	d) 6.0%
43.	25.0 mL of 12.0 N	M HCl is diluted to a fir	nal volume of 500.0 m	L. What is the concentration of the
a)	0.600 M	b) 0.00600 M	c) 2.40 M	d) 9.60 M
44.	32.5 g of Fe(SCN	N) ₂ are dissolved in 2.0	0 L of solution. What	is the molar concentration?
a)	0.143 M	b) 0.189 M	c) 0.0945 M	d) 0.378 M
45.	6.75 g of solid cal	lcium hydroxide is diss	solved in 250.0 mL of s	solution. What is the $[OH^{-}]$?
a)	0.364 M	b) 0.473 M	c) 0.946 M	d) 0.729 M
46.	How many grams 0 10 M NaOH?	s of NaOH must be diss	olved in 1.00 L of solu	ation to make a final concentration of
a)	40.0 g	b) 4.00 g	c) 0.400 g	d) 1.00 g
17	Which of these 1	00 M solutions will be	ve the highest nH?	
47. a)	CH ₃ OH	b) $Ca(NO_3)_2$	c) HCl	d) NH4OH
10	Which golt is not a	n outro 19	,	, .
48. a)	MgCl ₂	b) LiClO ₂	c) Ba(NO ₃) ₂	d) CsBr
49.	Which one of the	following is a strong e	lectrolyte?	
a)	H_2O	b) HF	c) KF	d) HNO ₂
50	The pOH of a solu	ution of NaOH is 11 30) What is the $[H^+]$ for the the theorem (H) of the theorem (H) of the tensor of	this solution?
a)	2.0×10^{-3}	b) 5.0×10^{-12}	c) 2.5×10^{-3}	d) 4.0×10^{-12}
51.	The $[H_3O^+]$ in a 0	0.050 M solution of Ba($OH)_2$ is:	
a)	$1.0 \times 10^{-5} M$		c) $5.0 \times 10^{-2} M$	
b)	1.0 x 10 ¹⁵ M		a) 5.0 x 10 ¹⁰ M	

52. a)	What is the appro 4.2	ximate pH of a solution b) 5.8	n labeled 6 x 10 ⁻⁵ M H c) 4.5	Br? d) 9.8
53	What is the nH of	5500.0 mL of solution	containing 0 0124 gram	$r = \frac{1}{2} \int \frac{1}{2} \frac{1}{2$
a)	11.04	b) 2.96	c) 9.68	d) 10.83
54. a)	The pH of a solut $4.2 \times 10^{-9} \text{ M}$	ion is 4.80. What is the b) 3.6 x 10 ⁻¹² M	concentration of hydr c) 1.6 x 10 ⁻⁵ M	To the provide ions in this solution? d) $6.3 \times 10^{-10} M$
55. a)	A solution in white 8.0, acidic	ch $[H^+] = 1 \ge 10^{-8} M$ has b) 8.0, basic	as a pOH of and is c) 6.0, acidic	d) 6.0, basic
56. a)	A 0.020 M soluti 2.0 x 10 ⁻⁶	on of an unknown wear b) 6.3×10^{-4}	k acid has a pH of 3.7(c) 1.3 x 10 ⁻⁵	0. What is the K_a of this acid? d) 1.6 x 10 ⁻³
57. a)	What is the appro 5.1	ximate pH of a solution b) 4.3	n labelled 0.05 M HCl c) 3.9	O? d) 2.1
58. a)	What is the pH of 9.5	a solution labelled 0.3b) 9.2	M (CH ₃) ₃ N? c) 10.8	d) 11.6
59. a) b)	Which of the follo 0.2 M sodium hyd 0.2 M ammonia	owing solutions has the droxide	 c) 0.2 M hypochloro d) 0.2 M benzoic action 	ous acid id
60. a)	A 0.10 M solution 3.5 x 10 ⁻⁸	n of a weak acid, HX, i b) 7.0 x 10 ⁻⁶	s 0.059% ionized. Eva c) 6.5 x 10 ⁻⁷	luate K_a for the acid. d) 4.2 x 10 ⁻⁶
61. a)	What is the percent 2.3 %	nt ionization of an 1.2 b) 0.84 %	M HF solution? c) 4.2 %	d) 0.22 %
62. a)	Which of the follo HClO	owing weak acids ioniz b) HF	c) CH ₃ COOH	at conjugate base? d) HCN
63. a)	What is K_b for the 1.6 x 10 ⁻⁵	e cyanide ion, CN ⁻ . b) 6.2 x 10 ⁻¹⁰	c) 1.0 x 10 ⁻⁷	d) 8.4 x 10 ⁻⁹
64. a)	What is the pH of 7.00	a 0.50 M solution of N b) 1.82	VaNO ₂ ? c) 5.52	d) 8.48
65. a)	What is the conce 0.30 M	entration of a sodium ac b) 2.1 M	cetate solution if the pF c) 0.43 M	H of the solution is 9.19? d) 0.068 M
66. a)	What is the pH of 5.06	60.060 M NH ₄ Cl? b) 5.18	c) 5.12	d) 5.24
67. a)	What is the conce 0.25 M	entration of ammonium b) 0.45 M	chloride in a solution c) 0.30 M	if its pH is 4.80? d) 0.60 M