Review for Unit Test 7: Acids, Bases and Salts (Chapter 8)

Objectives:

1. Write definitions for, or explain the meaning of: Bronsted-Lowry acid and base, neutral, strong acid, strong base, weak acid, weak base, concentrated, dilute, ionization, dissociation, hydrolysis, $\mathrm{pH}, \mathrm{K}_{\mathrm{w}}$, K_{a} and K_{b}.
2. Understand what is meant by the terms: salt, hydrolyze, percent dissociation, conjugate acid-base pair, parent acid, parent base, amphiprotic (amphoteric), monoprotic and polyprotic.
3. Does the $\mathrm{H}+$ ion exist in aqueous solution? Explain why or why not.
4. Know the general chemical and physical properties of acids and bases.
5. Be able to recognize acids, bases and salts from their chemical formulas.
6. Be able to name common acids and bases, using an ion chart.
7. Be able to recognize strong acids and bases, from their names or chemical formulas.
8. Identify or describe chemical and physical properties that could be used to distinguish between:
a) acids, bases and salts
b) strong and weak acids
c) strong and weak bases
9. Be able to predict the products of the following types of reactions:
a) acids and metals
b) acids and carbonates
c) acids and bases
d) Group I and II metal oxides in water
10. Be able to identify conjugate $\mathrm{acid} /$ base pairs.
11. Be able to write the ionization reactions of weak acids and bases, and their conjugate partners, in water.
12. Be able to write and use the K_{a} and K_{b} expressions of weak acids and bases. What factor(s) affect the value of K_{a} and K_{b} ?
13. Be able to predict whether a salt will dissolve in water to form an acidic, basic or neutral solution. Write any ionization (hydrolysis) reactions that may take place.
14. Know, and be able to apply, the relationships between the following:
a) pH and pOH
b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$
c) $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$ and K_{w}
15. Be able to calculate the pH of solutions of:
a) strong acids
b) strong bases
c) weak acids and acid salts
d) weak bases and basic salts
16. Be able to calculate K_{a} or K_{b} given:
a) the initial concentration of an acid or base and the pH of the final solution
b) the K_{a} or K_{b} for its conjugate partner
17. Be able to calculate percent dissociation (ionization) for weak acids and bases.

Sample Questions: Review for Acids, Bases and Salts

1. Acids are proton \qquad . Complete the following chart for these acids:

Acid	Ionization Reaction in Water	Conjugate Base	Ka	Kb
$\mathrm{H}_{2} \mathrm{SO}_{3}$				
HCHO_{2}				
$\mathrm{HPO}_{4}{ }^{2-}$				
$\mathrm{H}_{2} \mathrm{O}$				
$\mathrm{NH}_{4}{ }^{1+}$				
$\mathrm{HCO}_{3}{ }^{1-}$				
$\mathrm{H}_{2} \mathrm{SO}_{4}$				
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$				

2. Bases are proton \qquad . Complete the following chart for these bases:

Base	Ionization Reaction	Conjugate Acid	Ka	$\mathbf{K b}$
$\mathrm{ClO}-$				
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})$				
$\mathrm{CH}_{3} \mathrm{COO}^{-}$				
$\mathrm{HPO}_{4}{ }^{2-}$				
F^{1-}				
$\mathrm{H}_{2} \mathrm{O}$				
$\mathrm{NH}_{2} \mathrm{OH}$				
NH_{3}				
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$				
$\mathrm{HCO}_{3}{ }^{1-}$				

3. For nitrogen compounds, how can you recognize when they will behave as bases? As acids?
4. As a general rule for weak acids and bases, negative ions in solution will behave as \qquad .
5. Using your knowledge of trends for acid strengths, arrange the following acids in order from highest to lowest strength:

HCl
$\mathrm{H}_{3} \mathrm{PO}_{4}$
HI
$\mathrm{H}_{3} \mathrm{PO}_{3}$
6. Using Ka values, arrange the following acids in order from highest to lowest strength:

$$
\begin{array}{lllllll}
\mathrm{HNO}_{2} & \mathrm{H}_{3} \mathrm{PO}_{4} & \mathrm{HF} & \mathrm{HCH}_{3} \mathrm{COO} & \mathrm{H}_{2} \mathrm{~S} & \mathrm{H}_{2} \mathrm{SO}_{3} & \mathrm{H}_{2} \mathrm{CO}_{3}
\end{array}
$$

7. Which of the acids in Q6 has the strongest conjugate base? \qquad
8. Calculate the pH of the following solutions:
a) 15.4 g of potassium hydroxide in a total volume of 600.0 mL solution
(13.660, 3 decimal places)
b) 125 mL of 15.0 M of nitric acid diluted to 1.00 litre of solution ($-0.273,3$ decimal places)
c) a 0.0125 M solution of magnesium hydroxide
(12.398, 3 decimal places)
d) a 1.35 M solution of acetic acid (2.31, 2 decimal places from K_{a})
e) a 2.00 M solution of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$
f) 0.555 M solution of hypobromite ion (from sodium hypobromite) (9.77, 2 decimal places from K_{b})
g) 100.0 mL of $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ diluted to 500.0 mL of solution
(11.15, 2 decimals from K_{a})
(-0.556, 3 decimal places)
9. Complete the following chart. Include the correct number of sig digs in your answers:

$\mathbf{p H}$	$\mathbf{p O H}$	$\left[\mathbf{H}_{3} \mathbf{O}+\right]$	$[\mathbf{O H}]$	acid/base/neutral
1.25				
		4.63×10^{-10}		
	9.10			
			0.750	
	5.00			

10. The following reaction strongly favours the reactants:

$$
\mathrm{HCO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{HSO}_{4}{ }^{1-}(\mathrm{aq}) \leftrightarrow \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

a) the strongest acid in this system is: \qquad
b) the strongest base in this system is: \qquad
c) Will this reaction have a large or small value of $\mathrm{K}_{\text {eq }}$? \qquad Explain.
11. The pH of a 0.16 M solution of phenolic acid is 3.20 .
a) What is the Ka for phenolic acid? $\left(\mathrm{K}_{\mathrm{a}}=2.5 \times 10^{-6}\right)$
b) What is the percent dissociation of the acid in this solution? (only 0.39% dissociated)
12. Name the following substances and then predict whether their solutions will be acidic, basic or neutral:
a) $\mathrm{NaCH}_{3} \mathrm{COO}$
b) $\mathrm{NH}_{4} \mathrm{Cl}$ \qquad
c) $\mathrm{Li}_{2} \mathrm{O}$ \qquad
d) $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
e) $\mathrm{HBrO}(\mathrm{HOBr})$
f) CoBr_{2} \qquad
g) $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
h) $\mathrm{Na}_{3} \mathrm{PO}_{4}$ \qquad
i) HSCN \qquad
j) $\mathrm{CaC}_{2} \mathrm{O}_{4}$ \qquad
k) $\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}$ \qquad
l) $\mathrm{K}_{3} \mathrm{BO}_{3}$ \qquad
m) SnCl_{4} \qquad
13. What are two tests or properties you could distinguish between the following solutions?
a) NaCl and NaClO \qquad
b) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Li}_{2} \mathrm{O}$ \qquad
c) HClO_{2} and HClO_{3} \qquad
d) $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{Na}_{2} \mathrm{~S}$
e) $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{Co}(\mathrm{OH})_{2}$ \qquad
14. Write the products of the following reactions (if any) and then balance each reaction:
a) $\mathrm{Mg}(\mathrm{s})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow$
b) $\mathrm{NaOH}(\mathrm{aq})+\mathrm{Ba}(\mathrm{s}) \rightarrow$
c) $\mathrm{HBrO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow$
d) $\mathrm{K}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$

Long Calculation Questions: Be prepared to write out full solutions to questions such as:

1. The pH of a 0.10 M solution of periodic acid, HIO_{4}, is 1.42 . Calculate the K_{a} for periodic acid. $(\mathrm{Ka}=0.023)$
2. Butanoic acid, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$, is found in small quantities in human perspiration and is responsible for the foul odour often associated with locker rooms. A $0.0010 \mathrm{~mol} / \mathrm{L}$ solution of butanoic acid has a pH of 3.91 at $25^{\circ} \mathrm{C}$. Calculate the acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ of butanoic acid. $\left(\mathrm{Ka}=1.7 \times 10^{-5}\right)$
3. What is the percent ionization of a 0.18 M solution of cyanic acid, HOCN?
4. What is the percent ionization of $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})$ if the pH of the solution is 11.90 ?
5. Calculate the pH of a 0.040 M solution of $\mathrm{CsBrO}(\mathrm{aq})$.
6. Calculate the pH of a 1.00 M solution of $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{aq})$.
$(\mathrm{pH}=4.06)$

Practice Multiple Choice Questions: Acids, Bases and Salts

1. Which of the following is typical of bases?
a) conduct electric current in solution
c) concentration of $\mathrm{H}_{3} \mathrm{O}^{+}>$concentration of OH^{-}
b) taste sour
d) turns litmus red
2. Which of the following is/are properties of strong acids?
I) they react with carbonates to produce hydrogen gas
II) they have very high pH
III) they are good electrolytes
IV) they turn phenolphthalein pink
a) I, II and III only
c) III only
b) I and IV only
d) II and III only
3. A student tests a solution. It is colourless with phenolphthalein, green with bromothymol blue and a good electrolyte. This solution is probably:
a) hydrofluoric acid
c) potassium sulfate
b) calcium hydroxide
d) ammonium nitrate
4. Which of the following substances will have the highest percent dissociation (ionization)?
a) $\mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $\mathrm{H}_{2} \mathrm{SO}_{3}$
d) $\mathrm{H}_{3} \mathrm{PO}_{4}$
5. Which of the following substances will ionize in water?
I) $\quad \mathrm{CH}_{3} \mathrm{COOH}$
II) $\quad \mathrm{Mg}(\mathrm{OH})_{2}$
III) NH_{3}
IV) $\mathrm{Fe}(\mathrm{OH})_{3}$
a) I only
c) II and IV only
b) I and III only
d) I, II, III and IV
6. Which of the following aqueous solutions will have the highest pH ?
a) $\mathrm{MgSO}_{4}(\mathrm{aq})$
b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
c) $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$
d) $\mathrm{HClO}_{2}(\mathrm{aq})$
7. Which of the following substances would be classified as salts?
I) $\quad \mathrm{NaHCO}_{3}$
II) $\quad \mathrm{K}_{3} \mathrm{PO}_{4}$
III) $\quad \mathrm{LiHC}_{2} \mathrm{O}_{4}$
IV) $\mathrm{NH}_{4} \mathrm{SCN}$
a) I, II, III and IV
c) II and IV only
b) I, II and III
d) II only
8. Which of the following is/are polyprotic, strong acids?
I) $\quad \mathrm{HNO}_{3}$
II) $\quad \mathrm{HClO}_{4}$
III) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
IV) $\mathrm{H}_{3} \mathrm{PO}_{4}$
a) I, II, III and IV
c) III and IV only
b) II and III only
d) III only
9. Which of the following will have the lowest electrical conductivity?
a) $1.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
b) $1.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
c) $1.00 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$
d) $1.00 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$
10. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is
a) $\mathrm{HPO}_{4}{ }^{-2}$
b) HPO_{4}^{-3}
c) $\mathrm{H}_{3} \mathrm{PO}_{4}$
d) OH^{-}
11. The value of K_{b} for $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is
a) 1.4×10^{-12}
b) 6.2×10^{-8}
c) 1.6×10^{-7}
d) 7.5×10^{-3}
12. What is the pH of a $0.10 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ solution?
a) 0.20
b) 0.70
c) 13.30
d) 13.00
13. Which of the species below is/are present in a reagent bottle labelled $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
I) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
II) $\mathrm{HSO}_{4}{ }^{1-}(\mathrm{aq})$
III) $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
a) I only
c) II and III only
b) I and II only
d) I, II and III
14. A 0.20 M solution of hydrobromic acid is best described as:
a) strong and dilute
c) strong and concentrated
b) weak and concentrated
d) weak and dilute
15. Which of the following statements is/are true about neutralization reactions?
a) the products of all neutralization reactions are neutral
b) when strong acids are neutralized with strong bases, the reaction goes to completion
c) when strong acids are neutralized with weak bases, the reaction does not go to completion
d) all of the above
16. Which of the following is the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in any aqueous solution?
a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=14$
c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
d) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=14$
17. Which of the following tests could be used to distinguish between $\mathrm{HI}(\mathrm{aq})$ and $\mathrm{HIO}_{3}(\mathrm{aq})$?
I) the rate of reaction with magnesium metal
II) pH
III) the reaction with blue litmus paper
IV) the reaction with phenolphthalein
a) I and II only
c) I, II, III and IV
b) III and IV only
d) none of these tests will distinguish these substances
18. What are the two Bronsted-Lowry bases in this equilibrium?

$$
\mathrm{HSO}_{3}^{-1}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{SO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})
$$

a) $\mathrm{HSO}_{3}^{-1}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$
b) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
c) $\mathrm{SO}_{3}^{-2}(\mathrm{aq})$ and $\mathrm{HSO}_{3}^{-1}(\mathrm{aq})$
d) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ and $\mathrm{SO}_{3}^{-2}(\mathrm{aq})$
19. What is the pH of a solution of NiCl_{3} and what ion determines this?
a) solution is basic because of Ni^{3+} (aq)
c) solution is acidic because of $\mathrm{Ni}^{3+}(\mathrm{aq})$
b) solution is basic because of $\mathrm{Cl}^{1-}(\mathrm{aq})$
d) solution is acidic because of $\mathrm{Cl}^{1-}(\mathrm{aq})$
20. Which of the following solutions has a pH less than 7.00 ?
a) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$
b) $\mathrm{NaCl}(\mathrm{aq})$
c) $\mathrm{LiOH}(\mathrm{aq})$
d) $\mathrm{KCH}_{3} \mathrm{COO}(\mathrm{aq})$
21. Which of the following ions will hydrolyze?
a) $\mathrm{NO}_{3}{ }^{1-}(\mathrm{aq})$
b) $\mathrm{I}^{1-}(\mathrm{aq})$
c) $\mathrm{F}^{1-}(\mathrm{aq})$
d) $\mathrm{ClO}_{3}{ }^{1-}(\mathrm{aq})$
22. The amphiprotic ions are:
a) I and II only
b) II and III only
c) I and III only
d) I, II and III

I.	$\mathrm{HCO}_{3}{ }^{-}$
II.	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
III.	$\mathrm{CH}_{3} \mathrm{COO}^{-}$

23. What is the pH of a solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and what ion determines this?
a) solution is basic because of $\mathrm{NH}_{4}{ }^{1+}(\mathrm{aq})$ c) solution is acidic because of $\mathrm{NH}_{4}{ }^{1+}(\mathrm{aq})$
b) solution is basic because of $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
d) solution is acidic because of $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
24. Which of the following solutions will have the lowest electrical conductivity?
a) $0.1 \mathrm{M} \mathrm{NaHSO} 3(\mathrm{aq})$
b) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
c) $0.1 \mathrm{M} \mathrm{NaF}(\mathrm{aq})$
d) $0.1 \mathrm{M} \mathrm{HF}(\mathrm{aq})$
25. The conjugate acid of $\mathrm{HAsO}_{4}{ }^{2-}$ is:
a) $\left.\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-} \mathrm{aq}\right)$
b) $\mathrm{AsO}_{4}{ }^{3-}(\mathrm{aq})$
c) $\mathrm{H}_{3} \mathrm{AsO}_{4}(\mathrm{aq})$
d) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
26. Which of the following 1.0 M solutions would have a pH greater than 7.00 ?
a) $\mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})$
b) $\mathrm{HCN}(\mathrm{aq})$
c) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
d) $\mathrm{KNO}_{3}(\mathrm{aq})$
27. The relationship shown to the far right is the
a) K_{b} for $\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}(\mathrm{aq})$
b) K_{a} for $\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}(\mathrm{aq})$
c) K_{a} for $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{-}(\mathrm{aq})$
d) K_{b} for $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{-}(\mathrm{aq})$

$$
\frac{\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}\right]}
$$

28. The value of K_{b} for $\mathrm{HPO}_{4}{ }^{2-}$ is
a) 2.1×10^{-2}
b) 6.2×10^{-8}
c) 2.2×10^{-13}
d) 1.6×10^{-7}
29. Which of the following graphs describes the relationship between pH and pOH ?
a)

b)

c)

d)

30. The value of K_{b} for hydrogen oxalate $\left(\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right)$is:
a) 6.7×10^{-11}
b) 5.6×10^{-2}
c) 1.8×10^{-13}
d) 1.5×10^{-4}
31. The K_{b} expression for HSe^{-}is
a) $\mathrm{K}_{b}=\frac{\left[\mathrm{H}_{2} \mathrm{Se}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HSe}^{-}\right]}$
c) $\mathrm{K}_{b}=\frac{\left[\mathrm{HSe}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{Se}^{2-}\right]}$
b)

$$
\mathrm{K}_{b}=\frac{\left[\mathrm{HSe}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{Se}\right]}
$$

d)
$\mathrm{K}_{b}=\frac{\left[\mathrm{Se}^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HSe}^{-}\right]}$
32. The K_{b} expression for the reaction of $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$with water is:
a)
b)
c)
d)
$\mathrm{K}_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[\mathrm{OH}^{-}\right]} \quad \mathrm{K}_{a}=\frac{\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right.}{\left[\mathrm{HC}_{2}\right.}$
33. Which species is/ are amphiprotic?
a) I and II only
b) II and III only
c) I and III only
d) I, II and III

I.	$\mathrm{H}_{2} \mathrm{O}$
II.	$\mathrm{NH}_{4}{ }^{+}$
III.	$\mathrm{HCO}_{3}{ }^{-}$

34. Which of the following represents the ionization of water?
a) $\mathrm{H}_{2} \mathrm{O} \rightleftarrows \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
b) $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}_{2}$
c) $2 \mathrm{H}_{2} \mathrm{O} \underset{\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}}{ }$
d) $\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{H}_{2}}{ }+\frac{1}{2} \mathrm{O}_{2}$
35. The relationship shown is the expression for:
a) K_{b} for $\mathrm{H}_{3} \mathrm{BO}_{3}$
b) K_{b} for $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$

$$
\frac{\left[\mathrm{H}_{3} \mathrm{BO}_{3} \text { IOH } \mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]}
$$

c) K_{a} for $\mathrm{H}_{3} \mathrm{BO}_{3}$
d) K_{a} for $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$
36. Which of the following represents the reaction between MgO and $\mathrm{H}_{2} \mathrm{O}$?
a) $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}$
b) $2 \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MgOH}+\frac{1}{2} \mathrm{O}_{2}$
c) $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}+\mathrm{H}_{2} \mathrm{O}_{2}$
d) $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgH}_{2}+\mathrm{O}_{2}$
37. The salt produced by the reaction of $\operatorname{HSCN}(\mathrm{aq})$ and $\mathrm{Mg}(\mathrm{OH})_{2}$ (s) will be:
a) neutral
b) acidic
c) basic
d) no such reaction will occur
38. Arrange the following 0.10 M solutions in order from highest to lowest pH :
$\mathrm{HBr}(\mathrm{aq}) \quad \mathrm{HBrO}(\mathrm{aq}) \quad \mathrm{HBrO}_{2}(\mathrm{aq}) \quad \mathrm{HBrO}_{3}(\mathrm{aq})$
a) $\mathrm{HBr}(\mathrm{aq})>\mathrm{HBrO}(\mathrm{aq})>\mathrm{HBrO}_{2}(\mathrm{aq})>\mathrm{HBrO}_{3}(\mathrm{aq})$
b) $\mathrm{HBrO}(\mathrm{aq})>\mathrm{HBrO}_{2}(\mathrm{aq})>\mathrm{HBrO}_{3}(\mathrm{aq})>\mathrm{HBr}(\mathrm{aq})$
c) $\mathrm{HBr}(\mathrm{aq})>\mathrm{HBrO}_{3}(\mathrm{aq})>\mathrm{HBrO}_{2}(\mathrm{aq})>\mathrm{HBrO}(\mathrm{aq})$
d) $\mathrm{HBrO}_{3}(\mathrm{aq})>\mathrm{HBrO}_{2}(\mathrm{aq})>\mathrm{HBrO}(\mathrm{aq})>\mathrm{HBr}(\mathrm{aq})$
39. Calculate the $\left[\mathrm{OH}^{-1}\right]$ of a solution if the $\mathrm{pH}=11.00$:
a) 0.0010 M
b) $1.0 \times 10^{-11} \mathrm{M}$
c) 11 M
d) -1.0×10^{11}
40. Calculate the pH of a solution if it contains $0.22 \mathrm{~mol} / \mathrm{L} \mathrm{Ba}(\mathrm{OH})_{2}$
a) 0.44
b) 0.36
c) 13.64
d) 13.34
41. Sodium benzoate $\left(\mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}\right)$ is the salt of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$. It is commonly used as a food preservative. A solution of this salt is:
a) acidic
b) basic
c) neutral
d) insoluble in water
42. What is the percent ionization of a 0.95 M solution of HF at $25^{\circ} \mathrm{C}$?
a) 95%
b) 0.063%
c) 2.6%
d) 6.0%
43. 25.0 mL of 12.0 M HCl is diluted to a final volume of 500.0 mL . What is the concentration of the solution?
a) 0.600 M
b) 0.00600 M
c) 2.40 M
d) 9.60 M
44. 32.5 g of $\mathrm{Fe}(\mathrm{SCN})_{2}$ are dissolved in 2.00 L of solution. What is the molar concentration?
a) 0.143 M
b) 0.189 M
c) 0.0945 M
d) 0.378 M
45. 6.75 g of solid calcium hydroxide is dissolved in 250.0 mL of solution. What is the $\left[\mathrm{OH}^{-}\right]$?
a) 0.364 M
b) 0.473 M
c) 0.946 M
d) 0.729 M
46. How many grams of NaOH must be dissolved in 1.00 L of solution to make a final concentration of 0.10 M NaOH ?
a) 40.0 g
b) 4.00 g
c) 0.400 g
d) 1.00 g
47. Which of these 1.00 M solutions will have the highest pH ?
a) $\mathrm{CH}_{3} \mathrm{OH}$
b) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
c) HCl
d) $\mathrm{NH}_{4} \mathrm{OH}$
48. Which salt is not neutral?
a) MgCl_{2}
b) LiClO_{2}
c) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
d) CsBr
49. Which one of the following is a strong electrolyte?
a) $\mathrm{H}_{2} \mathrm{O}$
b) HF
c) KF
d) HNO_{2}
50. The pOH of a solution of NaOH is 11.30 . What is the $\left[\mathrm{H}^{+}\right]$for this solution?
a) 2.0×10^{-3}
b) 5.0×10^{-12}
c) 2.5×10^{-3}
d) 4.0×10^{-12}
51. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a 0.050 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is:
a) $1.0 \times 10^{-5} \mathrm{M}$
b) $1.0 \times 10^{-13} \mathrm{M}$
c) $5.0 \times 10^{-2} \mathrm{M}$
d) $5.0 \times 10^{-10} \mathrm{M}$
52. What is the approximate pH of a solution labeled $6 \times 10^{-5} \mathrm{M} \mathrm{HBr}$?
a) 4.2
b) 5.8
c) 4.5
d) 9.8
53. What is the pH of 500.0 mL of solution containing 0.0124 grams of $\mathrm{Ca}(\mathrm{OH})_{2}$?
a) 11.04
b) 2.96
c) 9.68
d) 10.83
54. The pH of a solution is 4.80 . What is the concentration of hydroxide ions in this solution?
a) $4.2 \times 10^{-9} \mathrm{M}$
b) $3.6 \times 10^{-12} \mathrm{M}$
c) $1.6 \times 10^{-5} \mathrm{M}$
d) $6.3 \times 10^{-10} \mathrm{M}$
55. A solution in which $\left[\mathrm{H}^{+}\right]=1 \times 10^{-8} \mathrm{M}$ has a pOH of \qquad and is \qquad $:$
a) 8.0 , acidic
b) 8.0 , basic
c) 6.0 , acidic
d) 6.0 , basic
56. A 0.020 M solution of an unknown weak acid has a pH of 3.70 . What is the K_{a} of this acid?
a) 2.0×10^{-6}
b) 6.3×10^{-4}
c) 1.3×10^{-5}
d) 1.6×10^{-3}
57. What is the approximate pH of a solution labelled 0.05 M HClO ?
a) 5.1
b) 4.3
c) 3.9
d) 2.1
58. What is the pH of a solution labelled $0.3 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$?
a) 9.5
b) 9.2
c) 10.8
d) 11.6
59. Which of the following solutions has the lowest pH at $25^{\circ} \mathrm{C}$?
a) 0.2 M sodium hydroxide
b) 0.2 M ammonia
c) 0.2 M hypochlorous acid
d) 0.2 M benzoic acid
60. A 0.10 M solution of a weak acid, HX , is 0.059% ionized. Evaluate K_{a} for the acid.
a) 3.5×10^{-8}
b) 7.0×10^{-6}
c) 6.5×10^{-7}
d) 4.2×10^{-6}
61. What is the percent ionization of an 1.2 M HF solution?
a) 2.3%
b) 0.84%
c) 4.2%
d) 0.22%
62. Which of the following weak acids ionizes to give the strongest conjugate base?
a) HClO
b) HF
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) HCN
63. What is K_{b} for the cyanide ion, CN^{-}.
a) 1.6×10^{-5}
b) 6.2×10^{-10}
c) 1.0×10^{-7}
d) 8.4×10^{-9}
64. What is the pH of a 0.50 M solution of NaNO_{2} ?
a) 7.00
b) 1.82
c) 5.52
d) 8.48
65. What is the concentration of a sodium acetate solution if the pH of the solution is 9.19 ?
a) 0.30 M
b) 2.1 M
c) 0.43 M
d) 0.068 M
66. What is the pH of $0.060 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$?
a) 5.06
b) 5.18
c) 5.12
d) 5.24
67. What is the concentration of ammonium chloride in a solution if its pH is 4.80 ?
a) 0.25 M
b) 0.45 M
c) 0.30 M
d) 0.60 M

