Answers to Review for Quiz: Acids, Bases and Salts

Acid	Ionization Reaction in Water	Conjugate Base	Ka	Kb
H_2SO_3	$H_2SO_3(l) + H_2O(l) \leftrightarrow HSO_3^{1-}(aq) + H_3O^+(aq)$	HSO ₃ ¹⁻	1.4 x 10 ⁻²	7.1 x 10 ⁻¹³
HCHO ₂	$\mathrm{HCHO}_{2}\left(l\right) + \mathrm{H}_{2}\mathrm{O}\left(l\right) \leftrightarrow \mathrm{HCO}_{2}^{1-}\left(\mathrm{aq}\right) + \mathrm{H}_{3}\mathrm{O}^{+}\left(\mathrm{aq}\right)$	HCO ₂ ¹⁻	1.8 x 10 ⁻⁴	5.6 x 10 ⁻¹¹
HPO ₄ ²⁻	$\mathrm{HPO_4^{2-}}(\mathrm{aq}) + \mathrm{H_2O}(\mathrm{l}) \leftrightarrow \mathrm{PO_4^{3-}}(\mathrm{aq}) + \mathrm{H_3O^+}(\mathrm{aq})$	PO ₄ ³⁻	4.8 x 10 ⁻¹³	2.1 x 10 ⁻²
H ₂ O	$H_2O(l) + H_2O(l) \leftrightarrow OH^{1-}(aq) + H_3O^+(aq)$	OH1-	1.0 x 10 ⁻¹⁴	1.0
$\mathrm{NH_4}^{\mathrm{1+}}$	$\mathrm{NH_4^+}(\mathrm{aq}) + \mathrm{H_2O}(\mathrm{l}) \leftrightarrow \mathrm{NH_3}(\mathrm{aq}) + \mathrm{H_3O^+}(\mathrm{aq})$	NH ₃	5.6 x 10 ⁻¹⁰	1.8 x 10 ⁻⁵
HCO ₃ ¹⁻	$\text{HCO}_3^{1-}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \leftrightarrow \text{CO}_3^{2-}(\text{aq}) + \text{H}_3\text{O}^+(\text{aq})$	CO ₃ ²⁻	4.7 x 10 ⁻¹¹	2.1 x 10 ⁻⁴
H_2SO_4	$H_2SO_4(l) + H_2O(l) \rightarrow HSO_4^{1-}(aq) + H_3O^+(aq)$	HSO4 ¹⁻	$1.0 \ge 10^3$	1.0 x 10 ⁻¹⁷
$C_5H_5NH^+$	$C_5H_5NH^+(aq) + H_2O(l) \leftrightarrow C_5H_5N(aq) + H_3O^+(aq)$	C ₅ H ₅ N	5.9 x 10 ⁻⁶	1.7 x 10 ⁻⁹

1. Acids are proton **donors**. Complete the following chart for these **acids**:

2. Bases are proton <u>acceptors</u>. Complete the following chart for these <u>bases</u>:

Base	Ionization Reaction	Conjugate Acid	Ka	Kb
ClO-	$\text{ClO}^{1-}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \leftrightarrow \text{HClO}(\text{aq}) + \text{OH}^-(\text{aq})$	HClO	4.0 x 10 ⁻⁸	2.5 x 10 ⁻⁷
N_2H_4 (aq)	$N_2H_4(aq) + H_2O(l) \leftrightarrow N_2H_5^+(aq) + OH^-(aq)$	$N_{2}H_{5}^{+}$	7.7 x 10 ⁻⁹	1.3 x 10 ⁻⁶
CH ₃ COO ¹⁻	$CH_{3}COO^{1-}(aq) + H_{2}O(1) \iff CH_{3}COOH(aq) + OH^{-}(aq)$	CH ₃ COOH	1.8 x 10 ⁻⁵	5.6 x 10 ⁻¹⁰
HPO ₄ ²⁻	$\text{HPO}_4^{2-}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \leftrightarrow \text{H}_2\text{PO}_4^{1-}(\text{aq}) + \text{OH}^-(\text{aq})$	$H_2PO_4^{1-}$	6.2 x 10 ⁻⁸	1.6 x 10 ⁻⁷
F ¹⁻	$F^{1-}(aq) + H_2O(l) \leftrightarrow HF(aq) + OH^{-}(aq)$	HF	6.3 x 10 ⁻⁴	1.6 x 10 ⁻¹¹
H ₂ O	$H_2O(l) + H_2O(l) \leftrightarrow H_3O^+(aq) + OH^{1-}(aq)$	H_3O^+	1.0 x 10 ⁻¹⁴	1.0
NH ₂ OH	$NH_2OH(aq) + H_2O(l) \leftrightarrow NH_3OH^+(aq) + OH^-(aq)$	$\mathrm{NH_3OH}^+$	1.1 x 10 ⁻⁶	8.8 x 10 ⁻⁹
NH ₃	$\mathrm{NH}_3(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_4^+(\mathrm{aq}) + \mathrm{OH}^-(\mathrm{aq})$	$\mathrm{NH_4}^+$	5.6 x 10 ⁻¹⁰	1.8 x 10 ⁻⁵
C ₅ H ₅ N	$C_5H_5N(aq) + H_2O(l) \leftrightarrow C_5H_5NH^+(aq) + OH^-(aq)$	$C_5H_5NH^+$	5.9 x 10 ⁻⁶	1.7 x 10 ⁻⁹
HCO ₃ ¹⁻	$HCO_3^{1-}(aq) + H_2O(l) \leftrightarrow H_2CO_3(aq) + OH^-(aq)$	H_2CO_3	4.5 x 10 ⁻⁷	2.2 x 10 ⁻⁸

3. For nitrogen compounds, how can you recognize when they will behave as bases? As acids?

- if a nitrogen compound is uncharged (neutral), it will probably behave as a base
- if a nitrogen compound is positively charged, it will probably behave as an acid
- 4. As a general rule for weak acids and bases, negative ions in solution will behave as **bases**.

5. Using your knowledge of trends for acid strengths, arrange the following acids in order from highest to lowest strength:

HI is the strongest (it is closest to the bottom of the Periodic table),

HCl is the only other strong acid so it comes next

 H_3PO_4 is a weak acid, but it is stronger than H_3PO_3 because it has more O atoms H_3PO_3 is the weakest of these acids

(13.660, 3 decimal places)

(-0.273, 3 decimal places)

(12.398, 3 decimal places)

 $(11.15, 2 \text{ decimals from } K_a)$

(-0.556, 3 decimal places)

 $(2.31, 2 \text{ decimal places from } K_a)$

 $(9.77, 2 \text{ decimal places from } K_b)$

6. Using Ka values, arrange the following acids in order from highest to lowest strength:

strongest:	H_2SO_3	$(Ka = 1.4 \times 10^{-2})$
Π	H_3PO_4	$(Ka = 6.9 \times 10^{-3})$
	HF	$(Ka = 6.3 \times 10^{-4})$
	HNO ₂	$(Ka = 5.6 \times 10^{-4})$
	HCH ₃ COO	$(Ka = 1.8 \times 10^{-5})$
\bigvee	H_2CO_3	$(Ka = 4.5 \times 10^{-7})$
weakest:	H_2S	$(Ka = 8.9 \times 10^{-8})$

- 7. Which of the acids in Q6 has the strongest conjugate base? H_2S has the strongest conjugate base, HS^-
- 8. Calculate the pH of the following solutions:
- a) 15.4 g of potassium hydroxide in 600.0 mL of distilled water
- b) 125 mL of 15.0 M of nitric acid diluted to 1.00 litre of solution
- c) a 0.0125 M solution of magnesium hydroxide
- d) a 1.35 M solution of acetic acid
- e) a 2.00 M solution of pyridine (C_5H_5N)
- f) 0.555 M solution of hypobromite ion (from sodium hypobromite)
- g) 100.0 mL of 18.0 M H_2SO_4 diluted to 500.0 mL of solution

3. Complete the following chart. Include the concer number of sig tags in your answers.					
pH	рОН	[H ₃ O+]	[OH-]	acid/base/neutral	
1.25	12.75	5.6 x 10 ⁻²	1.8×10^{-13}	acid	
9.334	4.666	4.63 x 10 ⁻¹⁰	2.16 x 10 ⁻⁵	base	
4.90	9.10	1.3 x 10 ⁻⁵	7.9 x 10 ⁻¹⁰	acid	
13.875	0.125	1.33×10^{-14}	0.750	base	
9.00	5.00	1.0 x 10 ⁻⁹	1.0 x 10 ⁻⁵	base	

9. Complete the following chart. Include the correct number of sig digs in your answers:

10. The following reaction strongly favours the reactants:

 $\text{HCO}_3^{1-}(\text{aq}) + \text{HSO}_4^{1-}(\text{aq}) \leftrightarrow \text{CO}_3^{2-}(\text{aq}) + \text{H}_2\text{SO}_4(\text{aq})$

- a) the strongest acid in this system is: H_2SO_4 (aq)
- b) the strongest base in this system is: $CO_3^{2-}(aq)$
- c) Will this reaction have a large or small value of K_{eq} ? Explain.
 - the K_{eq} for this reaction will be very small in the forward direction. Because the products of the reaction include a very strong acid and strong base (the conjugate of a weak acid), these species will tend to drive the reaction strongly in reverse. There will be very little product formed, so the value of K_{eq} will be much less than one.

- 11. The pH of a 0.16 M solution of phenolic acid is 3.20.
- a) What is the Ka for phenolic acid?
- b) What is the percent dissociation of the acid in this solution?

 $(K_a = 2.5 \times 10^{-6})$ (only 0.39% dissociated)

- 12. Name the following substances and then predict whether their solutions will be acidic, basic or neutral:
- a) NaCH₃COO: sodium acetate, basic
- b) NH₄Cl: ammonium chloride, acidic
- c) Li₂O: lithium oxide, basic
- d) $Sr(NO_3)_2$: strontium nitrate, neutral
- e) HBrO (HOBr): hypobromous acid, acidic
- f) CoBr₂: cobalt (II) bromide, acidic
- g) Cr(NO₃)₂: chromium (II) nitrate, acidic
- h) Na₃PO₄ : sodium phosphate, basic
- i) HSCN: thiocyanic acid, acidic
- j) CaC_2O_4 : calcium oxalate, basic
- k) $Mg(ClO_3)_2$: magnesium chlorate, neutral
- 1) K₃BO₃ : potassium borate, basic
- m) SnCl₄ : tin (IV) chloride, acidic
- 13. What are two tests or properties you could distinguish between the following solutions?
- a) NaCl and NaClO: sodium chloride is a neutral salt while sodium hypochlorite is a basic salt

Test	NaCl solution	NaClO solution
skin feel	watery	slippery
colour with phenolphthalein	colourless	pink
colour with bromothymol blue	green	blue
colour with red litmus	red	blue

b) H₂O and Li₂O: water is neutral and covalent while lithium oxide will form a base in solution

Test	H ₂ O solution (liquid)	Li ₂ O solution
skin feel	watery	slippery
colour with phenolphthalein	colourless	pink
colour with bromothymol blue	green	blue
colour with red litmus	red	blue
conductivity	non-electrolyte	electrolyte

c) HClO₂ and HClO₃: both of these solutions are acids, but HClO₂ is a weak acid while HClO₃ is strong

Test	HClO ₂ solution	HClO ₃ solution	
conductivity	weak electrolyte	strong electrolyte	
pH (use same concentration of both solutions, eg. 1.0M of each)	pH of HClO ₂ will be higher than pH of HClO ₃	pH of HClO ₃ will be lower than pH of HClO ₂	
rate of reaction with a metal	weak acid so reaction will be slow because the [H ₃ O+] is low	strong acid so reaction will be fast because the [H ₃ O+] is high	
rate of reaction with a carbonate	weak acid so reaction will be slow because the [H ₃ O+] is low	strong acid so reaction will be fast because the [H ₃ O+] is high	

Test	H ₂ S solution	Na ₂ S solution
skin feel	watery	slippery
pH	less than 7.0	greater than 7.0
colour with phenolphthalein	colourless	pink
colour with bromothymol blue	yellow	blue
colour with red litmus	red	blue
colour with blue litmus	red	blue
reaction with metals	produce H ₂ gas	no reaction
reaction with carbonates	produce CO ₂ gas	no reaction

13d) H_2S and Na_2S : in solution, H_2S is a weak acid and Na_2S is a basic salt

e) Ca(OH)₂ and Co(OH)₂: both solutions are bases, but Ca(OH)₂ is a strong base and Co(OH)₂ is weak

Test	Ca(OH) ₂ solution	Co(OH) ₂ solution	
conductivity	strong electrolyte	weak electrolyte	
pH (use same concentration of both solutions, eg. 1.0M of each)	pH of Ca(OH) ₂ will be higher than pH of Co(OH) ₂	pH of Co(OH) ₂ will be lower than pH of Ca(OH) ₂	

14. Write the products of the following reactions (if any) and then balance each reaction:

a) Mg (s) + 2 CH₃COOH (aq) \rightarrow H₂ (g) + Mg(CH₃COO)₂ (aq)

- b) NaOH (aq) + Ba (s) \rightarrow no reaction
- c) 2 HBrO₃ (aq) + K₂CO₃ (s) \rightarrow 2 KBrO₃ (aq) + H₂O (l) + CO₂ (g)
- d) $K_2O(s) + H_2O(l) \rightarrow 2 \text{ KOH (aq)}$

Answers to Multiple Choice Questions:

1. a	14. a	27. b	40. c	53. d
2. c	15.b	28. d	41. b	54. d
3. c	16. c	29. d	42. c	55. d
4. b	17.a	30. c	43. a	56. a
5. b	18.d	31. a	44. c	57. b
6. c	19. c	32. d	45. d	58. d
7. a	20. a	33. c	46. b	59. d
8. d	21. c	34. c	47. d	60. a
9. b	22. a	35. b	48. b	61. a
10. a	23. c	36. a	49. c	62. d
11. a	24. d	37. c	50. a	63. a
12. c	25. a	38. b	51. b	64. d
13. c	26. a	39. a	52. a	65. c

^{66.} d 67. b