Unit 8, Lesson 02: Answers to Practice with Oxidation Numbers

1. Find the oxidation numbers of the elements in **bold** print.

g)
$$Na_2O_2$$
 O is 1-

h)
$$K_2SO_4$$
 S is 6+

c)
$$MnO_2$$
 Mn is 4+

f)
$$ClO_4^{1-}$$
 Cl is 7+

i)
$$NH_4^{1+}$$
 N is 3 –

2. State whether the change is an oxidation or a reduction.

a)
$$MnO_4^{1-}$$
 becomes MnO_4^{2-} reduction

d)
$$P_4O_6$$
 becomes P_4O_{10} oxidation

c)
$$O^{2-}$$
 becomes O_2

f)
$$SO_4^{2-}$$
 becomes $S_2O_3^{2-}$

reduction

3. Identify the oxidizing and reducing agents in the following unbalanced reactions:

I oxidation number goes from 0 to 1–. It is reduced it is the oxidizing agent.

S oxidation number goes from 2– to 0. It is oxidized it is a reducing agent.

Zn oxidation number goes from 0 to 2+. It is oxidized it is the reducing agent.

b)
$$Z_{n}$$
 + $H_{n}O_{3}$ \rightarrow $Z_{n}(NO_{3})_{2}$ + NO_{2} + $H_{2}O_{3}$

N oxidation number goes from 5+ to 4+. It is reduced it is an oxidizing agent.

Ag oxidation number goes from 1+ to 0. It is reduced it is the oxidizing agent.

c)
$$Ag_2O + NH_3 \rightarrow Ag + H_2O + N_2$$

N oxidation number goes from 3- to 0. It is oxidized it is a reducing agent.

Cl oxidation number goes from 5+ to 1–. It is reduced it is the oxidizing agent.

d)
$$H_2O$$
 + ClO_3^{1-} + SO_2 \rightarrow SO_4^{2-} + HCl

S oxidation number goes from 4+ to 6+. It is oxidized it is a reducing agent.

Cr oxidation number goes from 6+ to 3+. It is reduced it is the oxidizing agent.

Br oxidation number goes from 1– to 0. It is oxidized it is a reducing agent.

Sn oxidation number goes from 2+ to 4+. It is oxidized it is the reducing agent.

Pb oxidation number goes from 4+ to 2+. It is reduced it is an oxidizing agent.

Sb oxidation number goes from 0 to 3+. It is oxidized it is the reducing agent.

g) Sb +
$$Cl_2 \rightarrow SbCl_3$$
 $\uparrow \qquad \qquad \uparrow$

Cl oxidation number goes from 0 to 1–. It is reduced it is an oxidizing agent.

I oxidation number goes from 1– to 0. It is oxidized it is the reducing agent.

h) NaI +
$$H_2SO_4 \rightarrow H_2S + I_2 + Na_2SO_4 + H_2O$$

S oxidation number goes from 6+ to 2–. It is reduced it is an oxidizing agent.