Unit 8, Lesson 02: Answers to Practice with Oxidation Numbers

1. Find the oxidation numbers of the elements in bold print.
a) HClO Cl is $1+$
b) $\mathrm{KClO}_{3} \mathrm{Cl}$ is $5+$
c) $\mathbf{M n O}_{2} \mathbf{M n}$ is $4+$
d) $\mathrm{PbSO}_{4} \quad \mathrm{~Pb}$ is $2+$
e) NaIO_{4} I is 7+
f) $\mathrm{ClO}_{4}{ }^{1-} \mathrm{Cl}$ is $7+$
g) $\mathrm{Na}_{2} \mathbf{O}_{2} \mathrm{O}$ is $1-$
h) $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{~S}$ is $6+$
i) $\mathrm{NH}_{4}{ }^{1+} \quad \mathrm{N}$ is $3-$
2. State whether the change is an oxidation or a reduction.
a) $\mathrm{MnO}_{4}{ }^{1-}$ becomes $\mathrm{MnO}_{4}{ }^{2-}$ reduction
d) $\mathrm{P}_{4} \mathrm{O}_{6}$ becomes $\mathrm{P}_{4} \mathrm{O}_{10}$
oxidation
b) N_{2} becomes NH_{3}
reduction
e) NH_{3} becomes $\mathrm{N}_{2} \mathrm{O}$
oxidation
c) O^{2-} becomes O_{2}
oxidation
f) $\mathrm{SO}_{4}{ }^{2-}$ becomes $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
reduction
3. Identify the oxidizing and reducing agents in the following unbalanced reactions:

I oxidation number goes from 0 to $1-$. It is reduced it is the oxidizing agent.

S oxidation number goes from 2- to 0 . It is oxidized it is a reducing agent.

Zn oxidation number goes from 0 to $2+$. It is oxidized it is the reducing agent.
b) $\mathrm{Zn}+\mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

N oxidation number goes from $5+$ to $4+$. It is reduced it is an oxidizing agent.

Ag oxidation number goes from $1+$ to 0 . It is reduced it is the oxidizing agent.
c) $\mathrm{Ag}_{2} \mathrm{O}+\underset{\uparrow}{\mathrm{NH}_{3}} \rightarrow \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\underset{\uparrow}{\mathrm{N}_{2}}$

N oxidation number goes from $3-$ to 0 . It is oxidized it is a reducing agent.

Cl oxidation number goes from $5+$ to $1-$. It is reduced it is the oxidizing agent.
d)

S oxidation number goes from $4+$ to $6+$. It is oxidized it is a reducing agent.

Cr oxidation number goes from $6+$ to $3+$. It is reduced it is the oxidizing agent.
e) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\underset{\uparrow}{\mathrm{HBr}} \rightarrow \mathrm{KBr}+\mathrm{CrBr}_{3}+\mathrm{H}_{2} \mathrm{O}+\underset{\uparrow}{\mathrm{Br}_{2}}$

Br oxidation number goes from $1-$ to 0 . It is oxidized it is a reducing agent.

Sn oxidation number goes from $2+$ to $4+$. It is oxidized it is the reducing agent.
f)

Pb oxidation number goes from $4+$ to $2+$. It is reduced it is an oxidizing agent.

Sb oxidation number goes from 0 to $3+$. It is oxidized it is the reducing agent.

Cl oxidation number goes from 0 to $1-$. It is reduced it is an oxidizing agent.

I oxidation number goes from $1-$ to 0 . It is oxidized it is the reducing agent.

S oxidation number goes from $6+$ to $2-$. It is reduced it is an oxidizing agent.

